Skip to main navigation menu Skip to main content Skip to site footer

Experimental and theoretical investigations of intermolecular interactions of a second order NLO crystal: 8-Hydroxyquinolinium salicylate

Abstract

 Multicomponent salt crystal of 8-hydroxyquinolinium salicylate has been synthesised by solid-state grinding method and the structure was confirmed by single crystal XRD analysis. The functional groups were identified by FT-IR spectrum. UV-Visible analysis reveals the optical transparency of the crystal in the visible region. The thermal stability of the crystal was investigated using TG/DTG analysis. Photoluminescence spectrum shows green emission. HOMO-LUMO analysis performed by B3LYP method at 6-311++G (d,p) basis set reveals charge transfer interactions in the molecule. Hirshfeld surface analysis and NCI plots were employed to identify the non-covalent interactions responsible for crystal packing. Second harmonic generation of the compound was investigated using urea as reference.

Keywords

C-H…ℼ interactions, Hirshfeld analysis, Second order NLO, Non- covalent interaction plot, Reduced density gradient


References

  1. Dario Braga, Crystal engineering, Where from, Where to? Chem. Commun.,2003, 2751-2754, Doi:10.1039/B306269B
  2. G.R. Desiraju, Supramolecular Synthons in Crystal Engineering- A New Organic Synthesis, Angew. Chem. Int. Ed. 34 (1995) 2311-2327 Doi:10.1002/anie.199523111
  3. G.P.Stahly, A survey of cocrystals reported prior to 2000, Cryst. Growth Des.9 (2009) 4212–4229, Doi:10.1021/cg900873t
  4. L. Leiserowitz, Molecular Packing Modes. Carboxylic acids, Acta Crystallogr.,Sect. B. 32 (1976) 775-802 Doi:10.1107/S0567740876003968
  5. J.M.Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules and Molecular Devices (Nobel lecture), Angew Chem. Inr Ed. Engl. 27 (1988) 89-112 Doi:10.1002/anie.198800891
  6. G.J.Zhao and K.Han, Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen- bond strengthening and weakening, ChemPhysChem 9 ( 2008) 1842 – 1846 10.1002/cphc.200800371
  7. C.B.Aakeroy and K.R.Seddon, The hydrogen bond and crystal engineering, Chem. Soc. Rev. 22 (1993) 397-407 Doi:10.1039/CS9932200397
  8. G.R.Desiraju, Crystal Engineering:A holistic view, Angew. Chem. Int. Ed. 46 (2007) 8342 – 8356 10.1002/anie.200700534
  9. S. Goel, H.Yadav, N. Sinha, B.Singh, I.Bdikin, B.Kumar, X-ray,dielectrc, piezoelectric, and optical analyses of a new nonlinear optical 8-hydroxyquinolinium hydrogen squarate crystal, Acta Cryst. B74 (2018) 12-23, Doi:10.1107/S2052520617013038
  10. G. Peramaiyan, P.Pandi, N.Vijayan, G. Bhagavannarayana, Crystal growth, structural, thermal, optical and laser damage threshold studies of 8-hydroxyquinolinium hydrogen maleate single crystals, J.Cryst.Growth 375 (2013) 6-9, 10.1016/j.jcrysgro.2013.04.011
  11. N. Sudharsana, V.Krishnakumar, R. Nagalakshmi, Synthesis, Experimental and Theoretical Studies of 8-hydroxyquinolinium 3,5-dinitrobenzoate single crystal, J.Cryst.Growth 398 (2014) 45-57, 10.1016/j.jcrysgro.2014.03.051
  12. C.C.Evans, M.Bagieu-Beucher, R.Masse, J F Nicoud, Nonlinearity Enhancement by Solid-State Proton Transfer: A New Strategy for the Design of Nonlinear Optical Materials, 10 (1998) 847-854 10.1021/cm970618g
  13. R.Kuroda, Y.Imai, N.Tajima, Generation of a co-crystal phase with novel coloristic properties via solidstate grinding procedures, ChemComm (2001) 2848-2849 10.1039/B207417F
  14. J.R.Jebamony, P.T.Muthiah, 8-Hydroxyquinolinium-Salicylate-Salicylic Acid (1/1/1) Complex, Acta Cryst. C54 (1998) 539-540 10.1107/S0108270197013930t.
  15. T.H Nguyen, P.W.Groundwater, J.A.Platts, D.E.Hibbs, Experimental and Theoretical Charge Density Studies of 8-Hydroxyquinoline Cocrystallized with Salicylic Acid, J. Phys. Chem. A 116 (2012) 3420-3427 10.1021/jp2108076
  16. G.Smith, U.D.Wermuth, J.M.White, Facile solid-state molecular assembly: the crystal structure of the unique 2 : 2 proton-transfer oxine-salicylic acid compound, CrystEngComm 5 (2003) 58–61
  17. K. Brandenburg, Diamond version 3.2k, Crystal Impact GbR,Bonn, Germany
  18. S K Wolff, D J Grimwood, J J McKinnon, D Jayatilaka and M A Spackman, Crystal Explorer 2.0 University of Western Australia:Perth, Australia, (2007)
  19. T. Lu , F. Chen , Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592
  20. W.Humphrey, A. Dalke and K. Schulten ``VMD - Visual Molecular Dynamics'' J. Molec. Graphics 14.1 (1996) 33-38.
  21. R. Silverstein,G.C Basseler, T.C Morrill, Spectroscopic identification of organic compounds. 5th ed. New York: John Wiley and Sons: Inc.; 1998.
  22. M. Szafran, K. Roszak, Z. Dega-Szafran, A. Komasa, A. Katrusiak, P. Barczyński,
  23. Structural, spectroscopic and theoretical studies of 8-hydroxyquinolinium bromide and its monohydrate,Vibrational Spectroscopy, 104 (2019) 10.1016/j.vibspec.2019.102962
  24. Xiao-hong GUAN, Guang-hao CHEN, Chii SHANG, ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide, Journal of Environmental Sciences 19 (2007) 438-443 10.1016/S1001-0742(07)60073-4
  25. Eric.S. Sales et al, Quinolines by Three-Component Reaction: Synthesis and Photophysical Studies, J. Braz. Chem. Soc., 26 (2015) 562-571
  26. http://dx.doi.org/10.5935/0103-5053.20150011
  27. T.A. Yousef, G.M. Abu El-Reash, O.A. El-Gammal, R.A. Bedier, Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone, J. Mol. Struct. 1035 (2013) 307-317 https://doi.org/10.1016/j.molstruc.2012.10.058
  28. G Smith, U D Wermth, J M White, Facile solid-state molecular assembly: the crystal structure of the unique 2 : 2 proton-transfer oxine-salicylic acid compound,
  29. CrystEngComm, 5 (2003) 58–61
  30. T.P.Balasubramanian, T.P.Muthiah, 8-Hydroxy-7-nitroquinoline-5-sulfonic Acid
  31. Monohydrate, Acta Cryst. C52 (1996) 1017-1019
  32. T.Balasubramanian, P.T.Muthiah, Hydrogen bonding patterns in substituted oxines.Redetermination of 8-Hydroxy-7-iodoquinoline -5-sulfonic acid,
  33. Acta Cryst. C52 (1996) 2072-2073
  34. H.Suezawa, T. Yoshida, Y.Umezawa, S. Tsuboyama, M. Nishio, CH/π Interactions Implicated in the Crystal Structure of Transition Metal
  35. Compounds A Database Study, Eur. J. Inorg. Chem.(2002) 3148-3155
  36. 1039/b313104a
  37. M.A.Spackman, D.Jayatilaka, Hirshfeld surface analysis, CrystEngComm, 11(2009) 19-32 10.1039/B818330A
  38. J.J McKinnon, A.S Mitchell, M.A Spackman, Hirshfeld Surfaces:A New Tool for Visualising and Exploring Molecular Crystals, Chem. Eur. J.4 (1998) 2136 – 2141
  39. P.Muthuraja, M.Sethuram, T. Shanmugavadivu, M. Dhandapani,
  40. Single crystal X-ray diffraction and Hirshfeld surface analyses of supramolecular
  41. assemblies in certain hydrogen bonded heterocyclic organic crystals, 1122 (2016) 146-156 10.1016/j.molstruc.2016.05.083
  42. R. Ballardini, G. Varani, M. T. Indelli, F. Scandola, Phosphorescent 8-Quinolinol Metal Chelates. Excited-State Properties and Redox Behavior, Inorg.Chem, 25 (1986) 3858-3865 10.1021/ic00242a006
  43. E. Bardez, I. Devol, B. Larrey, B. Valeur, Excited-State Processes in 8-Hydroxyquinoline: Photoinduced Tautomerization and Solvation Effects, J. Phys. Chem. B 101(1997) 7786-7793 10.1021/jp971293u
  44. . M.Yoshida, J. Aihara, Validity of the weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes with up to 120 carbon atoms, Phys. Chem. Chem. Phys 1 (1999) 227-230 10.1039/A807917J
  45. D. Hashemi, X. Ma, J. Kim, J. Kieffer, Design principles for the energy level tuning in donor/acceptor conjugated polymers, Phys. Chem. Chem. Phys, 21 (2019) 789-799
  46. R.G.Pearson, Absolute electronegativity and hardness correlated with molecular
  47. orbital theory, Proc. Nati. Acad. Sci. USA 83 (1986) 8440-8441 10.1073%2Fpnas.83.22.8440
  48. C G.Zhan, J. A. Nichols, David A. Dixon, Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies, J. Phys. Chem. A 107 (2003) 4184-4195 10.1021/jp0225774
  49. Z. Zhou and R. G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution, J. Am. Chem. Soc. 112 (1990) 5720–5724 10.1021/ja00171a007
  50. R.G.Poranne, A. P. Rahalkar, A. Stanger, The Predictive Power of Aromaticity: Quantitative Correlation between Aromaticity and Ionization Potentials and HOMO-LUMO Gaps in Oligomers of Benzene, Pyrrole, Furan, and Thiophene, Phys. Chem. Chem. Phys, 20 (2018) 14808-14817 10.1039/C8CP02162G
  51. J.C.Garcia et al, NCIPLOT: A Program for Plotting Noncovalent Interaction Regions J. Chem. Theory Comput. 7 (2011) 625–632 10.1021/ct100641a
  52. A. Otero-de-la-Roza, E. R. Johnsona, J. Contreras- García, Revealing non-covalent interactions in solids: NCI plots revisited, Phys. Chem. Chem. Phys., 14 (2012) 12165–12172 10.1039/c2cp41395g
  53. D. Gunther, R. A. Boto, J. C. Garcia, J. P. Piquemal, J. Tierny Characterizing Molecular Interactions in Chemical Systems, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 10.1109/TVCG.2014.2346403
  54. R. Chaudret, B. de Courcy, J. Contreras-García, E. Gloaguen, A. Zehnacker-Rentien, M. Mons, J. P. Piquemal, Unraveling non-covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy Phys. Chem. Chem. Phys.,16 (2014) 9876-9891 10.1039/C3CP52774C
  55. J. Contreras-García and W. Yang, Analysis of Hydrogen-Bond Interaction Potentials from the Electron Density: Integration of Noncovalent Interaction Regions, J. Phys. Chem. A 115 (2011) 12983–12990 10.1021/jp204278k