Experimental and theoretical investigations of intermolecular interactions of a second order NLO crystal: 8-Hydroxyquinolinium salicylate
Abstract
Multicomponent salt crystal of 8-hydroxyquinolinium salicylate has been synthesised by solid-state grinding method and the structure was confirmed by single crystal XRD analysis. The functional groups were identified by FT-IR spectrum. UV-Visible analysis reveals the optical transparency of the crystal in the visible region. The thermal stability of the crystal was investigated using TG/DTG analysis. Photoluminescence spectrum shows green emission. HOMO-LUMO analysis performed by B3LYP method at 6-311++G (d,p) basis set reveals charge transfer interactions in the molecule. Hirshfeld surface analysis and NCI plots were employed to identify the non-covalent interactions responsible for crystal packing. Second harmonic generation of the compound was investigated using urea as reference.
Keywords
C-H…ℼ interactions, Hirshfeld analysis, Second order NLO, Non- covalent interaction plot, Reduced density gradient
References
- Dario Braga, Crystal engineering, Where from, Where to? Chem. Commun.,2003, 2751-2754, Doi:10.1039/B306269B
- G.R. Desiraju, Supramolecular Synthons in Crystal Engineering- A New Organic Synthesis, Angew. Chem. Int. Ed. 34 (1995) 2311-2327 Doi:10.1002/anie.199523111
- G.P.Stahly, A survey of cocrystals reported prior to 2000, Cryst. Growth Des.9 (2009) 4212–4229, Doi:10.1021/cg900873t
- L. Leiserowitz, Molecular Packing Modes. Carboxylic acids, Acta Crystallogr.,Sect. B. 32 (1976) 775-802 Doi:10.1107/S0567740876003968
- J.M.Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules and Molecular Devices (Nobel lecture), Angew Chem. Inr Ed. Engl. 27 (1988) 89-112 Doi:10.1002/anie.198800891
- G.J.Zhao and K.Han, Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen- bond strengthening and weakening, ChemPhysChem 9 ( 2008) 1842 – 1846 10.1002/cphc.200800371
- C.B.Aakeroy and K.R.Seddon, The hydrogen bond and crystal engineering, Chem. Soc. Rev. 22 (1993) 397-407 Doi:10.1039/CS9932200397
- G.R.Desiraju, Crystal Engineering:A holistic view, Angew. Chem. Int. Ed. 46 (2007) 8342 – 8356 10.1002/anie.200700534
- S. Goel, H.Yadav, N. Sinha, B.Singh, I.Bdikin, B.Kumar, X-ray,dielectrc, piezoelectric, and optical analyses of a new nonlinear optical 8-hydroxyquinolinium hydrogen squarate crystal, Acta Cryst. B74 (2018) 12-23, Doi:10.1107/S2052520617013038
- G. Peramaiyan, P.Pandi, N.Vijayan, G. Bhagavannarayana, Crystal growth, structural, thermal, optical and laser damage threshold studies of 8-hydroxyquinolinium hydrogen maleate single crystals, J.Cryst.Growth 375 (2013) 6-9, 10.1016/j.jcrysgro.2013.04.011
- N. Sudharsana, V.Krishnakumar, R. Nagalakshmi, Synthesis, Experimental and Theoretical Studies of 8-hydroxyquinolinium 3,5-dinitrobenzoate single crystal, J.Cryst.Growth 398 (2014) 45-57, 10.1016/j.jcrysgro.2014.03.051
- C.C.Evans, M.Bagieu-Beucher, R.Masse, J F Nicoud, Nonlinearity Enhancement by Solid-State Proton Transfer: A New Strategy for the Design of Nonlinear Optical Materials, 10 (1998) 847-854 10.1021/cm970618g
- R.Kuroda, Y.Imai, N.Tajima, Generation of a co-crystal phase with novel coloristic properties via solidstate grinding procedures, ChemComm (2001) 2848-2849 10.1039/B207417F
- J.R.Jebamony, P.T.Muthiah, 8-Hydroxyquinolinium-Salicylate-Salicylic Acid (1/1/1) Complex, Acta Cryst. C54 (1998) 539-540 10.1107/S0108270197013930t.
- T.H Nguyen, P.W.Groundwater, J.A.Platts, D.E.Hibbs, Experimental and Theoretical Charge Density Studies of 8-Hydroxyquinoline Cocrystallized with Salicylic Acid, J. Phys. Chem. A 116 (2012) 3420-3427 10.1021/jp2108076
- G.Smith, U.D.Wermuth, J.M.White, Facile solid-state molecular assembly: the crystal structure of the unique 2 : 2 proton-transfer oxine-salicylic acid compound, CrystEngComm 5 (2003) 58–61
- K. Brandenburg, Diamond version 3.2k, Crystal Impact GbR,Bonn, Germany
- S K Wolff, D J Grimwood, J J McKinnon, D Jayatilaka and M A Spackman, Crystal Explorer 2.0 University of Western Australia:Perth, Australia, (2007)
- T. Lu , F. Chen , Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592
- W.Humphrey, A. Dalke and K. Schulten ``VMD - Visual Molecular Dynamics'' J. Molec. Graphics 14.1 (1996) 33-38.
- R. Silverstein,G.C Basseler, T.C Morrill, Spectroscopic identification of organic compounds. 5th ed. New York: John Wiley and Sons: Inc.; 1998.
- M. Szafran, K. Roszak, Z. Dega-Szafran, A. Komasa, A. Katrusiak, P. Barczyński,
- Structural, spectroscopic and theoretical studies of 8-hydroxyquinolinium bromide and its monohydrate,Vibrational Spectroscopy, 104 (2019) 10.1016/j.vibspec.2019.102962
- Xiao-hong GUAN, Guang-hao CHEN, Chii SHANG, ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide, Journal of Environmental Sciences 19 (2007) 438-443 10.1016/S1001-0742(07)60073-4
- Eric.S. Sales et al, Quinolines by Three-Component Reaction: Synthesis and Photophysical Studies, J. Braz. Chem. Soc., 26 (2015) 562-571
- http://dx.doi.org/10.5935/0103-5053.20150011
- T.A. Yousef, G.M. Abu El-Reash, O.A. El-Gammal, R.A. Bedier, Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone, J. Mol. Struct. 1035 (2013) 307-317 https://doi.org/10.1016/j.molstruc.2012.10.058
- G Smith, U D Wermth, J M White, Facile solid-state molecular assembly: the crystal structure of the unique 2 : 2 proton-transfer oxine-salicylic acid compound,
- CrystEngComm, 5 (2003) 58–61
- T.P.Balasubramanian, T.P.Muthiah, 8-Hydroxy-7-nitroquinoline-5-sulfonic Acid
- Monohydrate, Acta Cryst. C52 (1996) 1017-1019
- T.Balasubramanian, P.T.Muthiah, Hydrogen bonding patterns in substituted oxines.Redetermination of 8-Hydroxy-7-iodoquinoline -5-sulfonic acid,
- Acta Cryst. C52 (1996) 2072-2073
- H.Suezawa, T. Yoshida, Y.Umezawa, S. Tsuboyama, M. Nishio, CH/π Interactions Implicated in the Crystal Structure of Transition Metal
- Compounds A Database Study, Eur. J. Inorg. Chem.(2002) 3148-3155
- 1039/b313104a
- M.A.Spackman, D.Jayatilaka, Hirshfeld surface analysis, CrystEngComm, 11(2009) 19-32 10.1039/B818330A
- J.J McKinnon, A.S Mitchell, M.A Spackman, Hirshfeld Surfaces:A New Tool for Visualising and Exploring Molecular Crystals, Chem. Eur. J.4 (1998) 2136 – 2141
- P.Muthuraja, M.Sethuram, T. Shanmugavadivu, M. Dhandapani,
- Single crystal X-ray diffraction and Hirshfeld surface analyses of supramolecular
- assemblies in certain hydrogen bonded heterocyclic organic crystals, 1122 (2016) 146-156 10.1016/j.molstruc.2016.05.083
- R. Ballardini, G. Varani, M. T. Indelli, F. Scandola, Phosphorescent 8-Quinolinol Metal Chelates. Excited-State Properties and Redox Behavior, Inorg.Chem, 25 (1986) 3858-3865 10.1021/ic00242a006
- E. Bardez, I. Devol, B. Larrey, B. Valeur, Excited-State Processes in 8-Hydroxyquinoline: Photoinduced Tautomerization and Solvation Effects, J. Phys. Chem. B 101(1997) 7786-7793 10.1021/jp971293u
- . M.Yoshida, J. Aihara, Validity of the weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes with up to 120 carbon atoms, Phys. Chem. Chem. Phys 1 (1999) 227-230 10.1039/A807917J
- D. Hashemi, X. Ma, J. Kim, J. Kieffer, Design principles for the energy level tuning in donor/acceptor conjugated polymers, Phys. Chem. Chem. Phys, 21 (2019) 789-799
- R.G.Pearson, Absolute electronegativity and hardness correlated with molecular
- orbital theory, Proc. Nati. Acad. Sci. USA 83 (1986) 8440-8441 10.1073%2Fpnas.83.22.8440
- C G.Zhan, J. A. Nichols, David A. Dixon, Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies, J. Phys. Chem. A 107 (2003) 4184-4195 10.1021/jp0225774
- Z. Zhou and R. G. Parr, Activation hardness: new index for describing the orientation of electrophilic aromatic substitution, J. Am. Chem. Soc. 112 (1990) 5720–5724 10.1021/ja00171a007
- R.G.Poranne, A. P. Rahalkar, A. Stanger, The Predictive Power of Aromaticity: Quantitative Correlation between Aromaticity and Ionization Potentials and HOMO-LUMO Gaps in Oligomers of Benzene, Pyrrole, Furan, and Thiophene, Phys. Chem. Chem. Phys, 20 (2018) 14808-14817 10.1039/C8CP02162G
- J.C.Garcia et al, NCIPLOT: A Program for Plotting Noncovalent Interaction Regions J. Chem. Theory Comput. 7 (2011) 625–632 10.1021/ct100641a
- A. Otero-de-la-Roza, E. R. Johnsona, J. Contreras- García, Revealing non-covalent interactions in solids: NCI plots revisited, Phys. Chem. Chem. Phys., 14 (2012) 12165–12172 10.1039/c2cp41395g
- D. Gunther, R. A. Boto, J. C. Garcia, J. P. Piquemal, J. Tierny Characterizing Molecular Interactions in Chemical Systems, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 10.1109/TVCG.2014.2346403
- R. Chaudret, B. de Courcy, J. Contreras-García, E. Gloaguen, A. Zehnacker-Rentien, M. Mons, J. P. Piquemal, Unraveling non-covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy Phys. Chem. Chem. Phys.,16 (2014) 9876-9891 10.1039/C3CP52774C
- J. Contreras-García and W. Yang, Analysis of Hydrogen-Bond Interaction Potentials from the Electron Density: Integration of Noncovalent Interaction Regions, J. Phys. Chem. A 115 (2011) 12983–12990 10.1021/jp204278k