Skip to main navigation menu Skip to main content Skip to site footer

Bc Infrared-Transparent Nanostructured Nd0.2Y1.8O3 Synthesized by a Modified Combustion Technique

Abstract

Infrared transparent windows found applications in strategic space and defence missions. Cubic Y2O3 is a potential infrared transparent candidate due to its large infrared cut-off, high corrosion resistance, absence of birefringence, high mechanical strength, high thermal stability and low emissivity at elevated temperatures.A modified combustion synthesis was effectively utilised to synthesise nanostructured Nd0.3Y1.7O3. By susceptor assisted microwave heating the sample was sintered to 98.6% of the theoretical density at 1510oC for a soaking duration of just 20 minutes without the application of pressure or sintering additives. The reduced grain size of 0.53 0.01 µm  achieved by the susceptor assisted sintering technique is a remarkable result in the fabrication of high quality infrared transparent windows. The high load independent hardness of 8.21 GPa attributes to the reduction in grain size achieved by the microwave sintering.


References

  1. Y.H. Lan, J.Z. Jun, M.X. Jian, And W.S.Wei, “ New Development Transparent Aliumina Ceramics”, J. Inorg. Mat., 25 [8] 795-800 (2010)
  2. M. Grujicic, W.C. Bell, And B. Pandurangan, “ Design And Material Selection Guidelines And Strategies For Transparent Armor Systems”, Mat. Des. 34 808-819 (2012)
  3. X. Qin, H. Yang, D. Shen, H. Cheg, G.Zhou, S.Wang, D. Luo, D. Tand, J. Zhang, And J. Ma, “ Fabrication And Optical Properties Of Highly Transparent Er: Yag Polycrystalline Ceramics For Eye-Safe Solid-State Lasers”, Int. J. App. Ceram. Tchnol. 10[1] 123-128 (2013).
  4. D.D. Silva, And A. R. Boccaccini, “ Industrial Development In The Field Of Optically Transparent Inorganic Materials: A Survey Of Recent Patents”, Rec. Pat. Mat. Sci 1 56-73 (2008)
  5. Harris D C, Materials for Infrared Windows and Domes, Properties and Performance. SPIE Press, Bellingham, WA, 1999.
  6. D.C.Harris, 'Durable 3-5µm transmitting infrared window materials', Infra.Phy.Tech. 39 185-201 (1998).
  7. J. Chen, Z.P. Gao, J.M. Wang, and D.H. Zhang," Dielectric Properties of Yttria Ceramics at High Temperature", J.Ele. Tech. Chi. 5 [4] 320-324(2007).
  8. Y. Tsukuda, 'Properties of Black Y2O3 Sintered Bodies', Mat. Res. Bull. 16 453-459 (1981).
  9. R.M. Sova, M.J. Linevsky, M. E. Thomas, and F. F. Mark, "High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel", Infra. Phy. Tech. 39 251-261 (1998).
  10. Serivalsatit K, Kokuoz B, Kokuoz B Y, Kennedy M and Ballato John, Synthesis, Processing and Properties of Submicrometer-Grained Highly Transparent Yttria Ceramics, J.Am.Ceram.Soc. 93[5] (2010) 1320-1325.
  11. ] Tsukuda Y, Properties of blackY2O3 sintered bodies,Mater.Res.Bull 16(1981) 453-459
  12. F. Maglia, I .G. Tredici, U. A. Tamburini, “Densification And properties of Bulk Nanocrystalline Functional Ceramics With Grain Size Below 50nm”, J. Eur.Ceram.Soc.33(2013)1045–1066.
  13. H.Gong, D.Y. Tang, H. Huang, T.S. Zhang, and J.Ma, "Effect of grain size on sinterability of yttria nanopowders synthesized by carbonate-precipitation process", Mat. Chem. Phy. 112 423-426 (2008).
  14. N. Dasgupta , R. Krishnamoorthy , and K. T. Jacob, " Glycol–nitrate combustion synthesis of fine sinter-active yttria", Inter. J.Inorg. Mat. 3 143-149 (2001).
  15. Y. Huang, D. Jiang , J. Zhang , and Q. Lin, "Precipitation synthesis and sintering of lanthanum doped yttria transparent ceramics", Opt. Mat. 311448-1453 (2009).
  16. R.V. Mangalaraja, J. Mouzon, P. Hedstrom,K.V.S. Ramam, . P. Camurri, M.Oden, and I. Kero, "Combustion Synthesis of Y2O3 and Yb-Y2O3, Part I. Nanopowders and their Characterisation", J. Mat. Proc. Tech. 208 415-422 (2008).
  17. R.Srinivasan, R.Yogamalar, and A. C. Bose, "Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method", Mat. Res.Bull. 45 1165-1170 (2010).
  18. Mathew C T, Sam Solomon , Jacob Koshy and Jijimon K Thomas, Infrared transmittance of hybrid microwave sintered yttria, Ceram. Int. 41[8] (2015) 10070-10078.
  19. Wachtman, John B. (1996) Mechanical Properties of Ceramics. New York: Wiley-Interscience, John Wiley & Son's.
  20. J. James, R. Jose, Asha M. John, J. Koshy, A Single step process for the synthesis of nanoparticles of ceramic oxide powders. U.S. Patent 6761866, 2004.
  21. Thomas J K, Padma Kumar H, Pazhani R, Solomon S, Jose R , Koshy J , Synthesis of strontium zirconate as nanocrystals through a single step combustion process, Materials Letters 61 (2007) 1592–1595.
  22. Thomas J K, Padma Kumar H, Annamma John, Suni V,Joy K, Solomon S , Koshy J, Nanocrystalline GdBa2HfO5.5 perovskite dielectric material- A single-step synthesis and its characterisation, J.Phys.Chem.Solids. 70 (2009) 703-706.
  23. Shannon R D, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A 32 (1976) 751-767.
  24. Mao X, Li X, Feeng M, Fan j, Jiang B, Zhang L, Cracks in transparent La-doped yttria ceramics and the formation mechanism, Journal of the European Ceramic Society 35 (2015) 3137-3143.
  25. Langford J I, Boutif A, Auffredic, Lauret D, The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking fault inex-oxalate Zinc Oxide, J.Appl.Cryst 26 (1993) 22-23.
  26. McDevitt N T, Davidson A D, Infrared lattice spectra of cubic rare earth oxides in the region 700 to 50 cm-1, Journal of the Optical Society of America 56[5] (1966) 636-638.
  27. Kubelka P, New Contributions to the Optics of Intensely Light-Scattering Materials Part I, J. Opt. Soc. Am. 38 [5] (1948) 448-457.
  28. Goldstein A and Krell A, Transparent ceramics at 50: Progress made and Further Prospects, Journal of the American Ceramic Society (2016) 1-25.
  29. Callister W D, Materials Science and Engineering: An Introduction, 7th Edition, Wiley, New York, 2007.
  30. Osoro G M, Moya J S and Pecharroman C, Transparent alumina by vacuum sintering, Journal of the European Ceramic Society 32 (2012) 2925-2933.
  31. Sahin O, Uzun O, Lizer M S, Gocmez H and Kolemen U, Dynamic hardness and elastic modulus calculation of porous SiAlON ceramics using depth-sensing indentation technique, Journal of the European Ceramic Society 28[6] (2008) 1235-1242.
  32. Gong G, Wu J and Guan Z, Load dependence of the apparent hardness of silicon nitride in a wide range of loads, Materials letters 35[1-2] (1998) 58-61.
  33. Gong J and Li Y, An energy-balance analysis for the size effect in low-load hardness testing, Journal of Materials Science 35 (2000) 209-213.
  34. Liu W H, Wu Y, He J Y, Nieh T G and Lu Z P, Grain growth and Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Materialia, 68 (2013) 526-529.