Skip to main navigation menu Skip to main content Skip to site footer

Infrared-Transparent Nanostructured La0.3Y1.7O3 Synthesized by a Modified Combustion Technique

Abstract

Infrared transparent windows found to have applications in demanding defense and space missions. In this paper we report the synthesis of La0.3Y1.7O3 by a modified auto-igniting combustion technique and the sintering of the pellets made from the ultrafine nanostructured powder using resistive heating. The XRD analysis and  High Resolution Transmission Electron Microscopic(HR-TEM) studies reveal that the average crystallite size is ~16nm and the lattice planes are well defined. The pure white La0.3Y1.7O3  powder is uniaxially compacted in to pellets in a 14mm diameter steel die and sintered to 98% theoretical density without any sintering additives or applying pressure at 1560oC for 2hours  in a conventional furnace which. The transmission spectrum of the sintered pellet in the Uv-Vis region reveals that the material is showing 77% of transmittance in the visible region and 76% in the Mid IR region. The results clearly indicate that the ultra-fine La0.3Y1.7O3 nanopowder synthesized by the modified auto-igniting combustion technique synthesised using single step combustion method followed by resistive heating can be used very effectively for the fabrication of improved infrared transparent windows and domes.


References

  1. ] D.C.Harris, Materials for Infrared Windows and Domes, Properties and Performance. SPIE Press, Bellingham, WA, 1999.
  2. Y.H. Lan , J.Z. Jun, M.X. Jian, and W.S. Wei, "New Development of Transparent Alumina Ceramics", J. Inorg. Mat., 25 [8] 795-800 (2010).
  3. M. Grujicic, W.C. Bell, and B. Pandurangan, "Design and material selection guidelines and strategies for transparent armor systems", Mat. Des. 34 808–819 (2012).
  4. X.Qin,H.Yang,D. Shen, H. Chen,G. Zhou, S. Wang,D. Luo, D. Tang,J. Zhang,and J. Ma, "Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers", Int. J. App. Ceram. Technol.10 [1] 123-128 (2013).
  5. T. Tetsui, T. Kobayashi, T. Mori,T. Kishimoto,and H. Harada, "Evaluation of Yttria Applicability as a Crucible for Induction Melting of TiAl Alloy", Mat. Trans. 51[9] 1656 - 1662 (2010).
  6. D.D. Silva, and A.R. Boccaccini," Industrial Developments in the Field of Optically Transparent Inorganic Materials: A Survey of Recent Patents" ,Rec. Pat.Mat. Sci. 1 56-73 (2008).
  7. D.C. Harris, 'Durable 3-5µm transmitting infrared window materials', Infra.Phy.Tech. 39 185-201 (1998).
  8. J. Chen, Z.P. Gao, J.M. Wang, and D.H. Zhang," Dielectric Properties of Yttria Ceramics at High Temperature", J.Ele. Tech. Chi. 5 [4] 320-324(2007).
  9. A.C Pastor, R.C Pastor, "Crystal Growth above 2200oC by the Verneuil Method", Mat.Res.Bull. 2 555-559 (1967).
  10. Y. Tsukuda, 'Properties of Black Y2O3 Sintered Bodies', Mat. Res. Bull. 16 453-459 (1981).
  11. R.M. Sova, M.J. Linevsky, M. E. Thomas, and F. F. Mark, "High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel", Infra. Phy. Tech. 39 251-261 (1998).
  12. Z. Huang, X. Sun, Z. Xiu, S. Chen, and C.T. Tsai, " Precipitation synthesis and sintering of yttria nanopowders", Mat. Lett. 58 2137-2142 (2004).
  13. R.Srinivasan, R.Yogamalar, and A. C. Bose, "Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method", Mat. Res.Bull. 45 1165-1170 (2010).
  14. Y. Huang, D. Jiang , J. Zhang , and Q. Lin, "Precipitation synthesis and sintering of lanthanum doped yttria transparent ceramics", Opt. Mat. 311448-1453 (2009).
  15. H.Gong, D.Y. Tang, H. Huang, T.S. Zhang, and J.Ma, "Effect of grain size on sinterability of yttria nanopowders synthesized by carbonate-precipitation process", Mat. Chem. Phy. 112 423-426 (2008).
  16. R.V. Mangalaraja, J. Mouzon, P. Hedstrom,K.V.S. Ramam, . P. Camurri, M.Oden, and I. Kero, "Combustion Synthesis of Y2O3 and Yb-Y2O3, Part I. Nanopowders and their Characterisation", J. Mat. Proc. Tech. 208 415-422 (2008).
  17. N. Dasgupta , R. Krishnamoorthy , and K. T. Jacob, " Glycol–nitrate combustion synthesis of fine sinter-active yttria", Inter. J.Inorg. Mat. 3 143-149 (2001).
  18. Mathew.C.T, Sam Solomon , Jacob Koshy and Jijimon K Thomas, Infrared transmittance of hybrid microwave sintered yttria, Ceram. Inter. 41[8] (2015) 10070-10078.
  19. J.K. Thomas, H. Padma Kumar, R. Pazhani, S. Solomon, R. Jose and J. Koshy, " Synthesis of strontium zirconate as nanocrystals through a single step combustion process", Mat. Let. 61 1592–1595 (2007) .
  20. J.K. Thomas, H. Padma Kumar, S. Solomon, C.N.George, K.Joy and J.Koshy, " Nanoparticles of SmBa2HfO5.5 through a single step auto-igniting combustion technique
  21. and their characterization", phys. stat. sol. (a) 204 [9] 3102–3107 (2007).
  22. J.I.Langford, and A.J.C.Wilson, "Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size", J.Appl.Cryst, 11 102-113(1978).
  23. G.K.Williamson, and W.H.Hall, "X-Ray Line Broadening from Filed Aluminium and Wolfram", Act.Meta.1 22-31(1953).
  24. T.K.Vishnuvardhan,V.R.Kulkarni,C.Basavaraja, and S.C.Raghavendra," Synthesis, characterisation and a.c. conductivity of polypyrrole/Y2O3 composites", Bull.Mater.Sci.29 [1] 77-83 (2006).
  25. Y.Repelin, C.Proust,E.Husson, and J.M.Beny," Vibrational Spectroscopy of the C-form of Yttrium Sesquioxide", J.Sol.St.Chem. 118 163-169(1995).
  26. R.R.Reddy, and S.Anjaneyulu, "Analysis of the Moss and Ravindra Relations", Phy.Stat.Sol.(b). 174 1091-1093 (1992).
  27. R.R.Reddy, K.R.Gopal, K.Narasimhulu, L.S.S.Reddy, K.R.Kumar, C.V.K.Reddy, and S.N.Ahmed,"Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides" Opt.Ma., 31 209-212 (2008).