Skip to main navigation menu Skip to main content Skip to site footer

Phytochemical analysis and anti-biofilm activity of Carica papaya leaves against Serratia marcescens, Pseudomonas aeruginosa, Vibrio cholera, and Enterococcus faecalis.

Abstract

Screening plant extracts for discovering new compounds effective in treating bacterial infections has been of great interest to scientists. Phytochemical plant extracts have shown direct antibacterial activity by affecting bacterial growth and metabolism. An EPS (extracellular polymeric substance) matrix protects a biofilm, a structural form of a microbial group. Biofilms are believed to be the major cause of infections and play an essential role in the development of drug resistance. In this study, we investigated the phytochemical composition and anti-biofilm properties of papaya (Carica papaya L.) leaf extract. The preliminary results of our studies indicate that papaya leaf extract contains a variety of bioactive compounds, including triterpenes, steroids, coumarins, quinones, and tannins. These extracts were able to prevent biofilm formation in Serratia marcescens, Pseudomonas aeruginosa, and Vibrio cholera. This study suggests that papaya leaf extracts can be used to develop anti-biofilm agents to control infections caused by these pathogens and prevent the formation of biofilms on medical devices.


References

  1. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 6, PMC-S14459.
  2. Mah, T. F. C., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in microbiology, 9(1), 34-39.
  3. Fux, C. A., Stoodley, P., Hall-Stoodley, L., & Costerton, J. W. (2003). Bacterial biofilms: a diagnostic and therapeutic challenge. Expert review of anti-infective therapy, 1(4), 667-683.
  4. Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural products as platforms to overcome antibiotic resistance. Chemical reviews, 117(19), 12415-12474.
  5. Fuentes, G., & Santamaría, J. M. (2014). Papaya (Carica papaya L.): origin, domestication, and production. In Genetics and genomics of papaya (pp. 3-15). Springer, New York, NY.
  6. Hastuty, A. (2019). Antibiofilm and antimicrobial activities of papaya (Carica papaya L.) and stevia (Stevia rebaudiana Bertoni) leaf extracts against three biofilm-forming bacteria. Journal of Microbial Systematics and Biotechnology, 1(1), 19-29.
  7. Anibijuwon, I. I., & Udeze, A. O. (2009). Antimicrobial activity of Carica papaya (pawpaw leaf) on some pathogenic organisms of clinical origin from South-Western Nigeria. Ethnobotanical Leaflets, 2009(7), 4.
  8. Satrija, F., Nansen, P., Bjørn, H., Murtini, S. H. E. S., & He, S. (1994). Effect of papaya latex against Ascaris suum in naturally infected pigs. Journal of Helminthology, 68(4), 343-346.
  9. Ceccarelli, D., & Colwell, R. R. (2014). Vibrio ecology, pathogenesis, and evolution. Frontiers in microbiology, 5, 256.
  10. Albuquerque Costa, R., Araújo, R. L., Souza, O. V., & Vieira, R. H. S. D. F. (2015). Antibiotic-resistant Vibrios in farmed shrimp. BioMed Research International, 2015.
  11. McGowan Jr, J. E. (1983). Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Reviews of infectious diseases, 5(6), 1033-1048.
  12. Quinn, J. P. (1998). Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clinical infectious diseases, 27(Supplement_1), S117-S124.
  13. Upadhyaya, G. P., Lingadevaru, U. B., & Lingegowda, R. K. (2011). Comparative study among clinical and commensal isolates of Enterococcus faecalis for presence of esp gene and biofilm production. The Journal of Infection in Developing Countries, 5(05), 365-369.
  14. Ghosh, A., Bandyopadhyay, A., Ghosh, P., & Chatterjee, P. (2013). Evaluation of antibacterial potentiality of a Cyclopenta Naphthalene tetraol terpenoid isolated from Curcuma caesia Roxb. Journal of Botanical Science, 3(1), 27-34.
  15. Fawehinmi, A. B., Lawal, H., Etatuvie, S. O., & Oyedeji, F. O. (2013). Preliminary phytochemical screening and antimicrobial evaluation of four medicinal plants traditionally used in Nigeria for skin infection. African Journal of Pure and Applied Chemistry, 7(2), 44-49.
  16. Jacob, S. J. P., & Shenbagaraman, S. (2011). Evaluation of antioxidant and antimicrobial activities of the selected green leafy vegetables. Int. J. Pharm. Tech. Res, 3(1), 148-152.
  17. Dominguez, X. A. (1973). Analítico: Metodos de investigacion fitoquimica.
  18. Firdouse, S., & Alam, P. (2011). Phytochemical investigation of extract of Amorphophallus campanulatus tubers. International Journal of Phytomedicine, 3(1), 32.
  19. Onodenalore, A. C. (1998). Value-added functional protein products and endogenous antioxidants from aquatic species (Doctoral dissertation, Memorial University of Newfoundland).
  20. Kırmusaoğlu, S. (2019). The methods for detection of biofilm and screening antibiofilm activity of agents. Antimicrobials, antibiotic resistance, antibiofilm strategies and activity methods, 1-17.
  21. Ilham, R., Lelo, A., Harahap, U., Widyawati, T., & Siahaan, L. (2019). The effectivity of ethanolic extract from papaya leaves (Carica papaya L.) as an alternative larvacide to Aedes spp. Open Access Macedonian Journal of Medical Sciences, 7(20), 3395.
  22. Bhagour, K., Arya, D., & Gupta, R. S. (2016). A review: Antihyperglycemic plant medicines in management of diabetes. Acupuncture and Related Therapies, 4(4), 7-16.
  23. Dotto, J. M., & Abihudi, S. A. (2021). Nutraceutical value of Carica papaya: A review. Scientific African, 13, e00933.
  24. Balsano, C., & Alisi, A. (2009). Antioxidant effects of natural bioactive compounds. Current pharmaceutical design, 15(26), 3063-3073.