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A copper(1)/2,2"-bipyridyl complex catalyzes an amination reaction of silyl ketene acetals
with N-chloroamines, presenting a new preparative method of R-amino esters.

Amines intrinsically possess a nucleophilic property. Their nucleophilic substitution
reactions present con- ventional preparative methods of substituted amines. Transition-
metal-catalyzed cross-coupling reactions of aryl halides with amines are also powerful
methods for the formation of C N bonds.* An alternative pathway to substituted amines
has recently become available by the use of electrophilic amination reagents together with
nu- cleophilic organometallic species.> For example, Johnson and co-workers have
reported their pioneering research on copper- and nickel-catalyzed amination reactions of
diarylzinc compounds using N-hydroxyl(dialkyl)amine derivatives as the amination
reagent.®" N-Chloroamines are also promising amination reagents with their easy
availability® as well as high reactivity.* Jarvo and co- worker reported a nickel-catalyzed
amination reaction of diarylzinc compounds with N-chloro(dialkyl)amines, which formed
tertiary anilines.?® Similarly, secondary ani- lines are produced by the reaction of in situ-
generated N-chloro(monoalkyl)amines with arylmagnesium reagents in the presence of an
excess amount of titanium(1V) isopropoxide.?® Furthermore, transition-metal-catalyzed
direct C H amination reactions of aromatic compounds with N-chloro(dialkyl)amines
have been developed by

Miura,® Yu,” and Glorius.®® It is also possible to intro- duce an amino group at the R-
positions of carbonyl compounds by the reaction of their lithium enolates with N-
chloroamines,’®** although the substrate scope is limited probably due to the strongly basic
reaction conditions as well as competing side reactions such as a chlorina- tion reaction.
We envisaged that an analogous amination reaction of carbonyl compounds would become
feasible under milder conditions if it is assisted by transition-metal catalysts. Herein we
report that a copper(1)/2,2"-bipyridyl complex successfully catalyzes an amination reaction



of
silyl ketene acetals with N-chloroamines to afford R-amino
esters.

We initially attempted a direct amination reaction of methyl phenylacetate with N-
chloromorpholine (2a, 1.3 equiv) in the presence of Cul (10 mol %) and 2,2-bipyridyl (10
mol %). Various bases (2.0 equiv) such as NEt(i-Pr),, K,COs, and K(Ot-Bu) were
examined, and the desired methyl 2-morpholino-2-phenylacetate (3aa) was formed in 6%
(NMR) yield at best when K,CO3 was used. Then, methyl phenylacetate was replaced by
its activated form, trimethylsilyl ketene acetal 1a (E/Z = 76:24). An amina- tion reaction
proceeded in the absence of a base, and after 12 h, 3aa was obtained in 39% yield together
with methyl
2-chloro-2-phenylacetate (4aa, 29% yield) (Scheme 1).

Scheme 1. Effect of Silyl Group
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Other sterically bulkier silyl groups were examined, and 3aa was obtained in 80% isolated
yield when triisopropyl- silyl ketene acetal 1c (E/Z = 82:18) was employed. It seemed that
bulkier silyl groups disfavored the formation of 4aa to improve the Xle|d of 3aa. A similar
result was observed with 1c of an opposite E/Z ratio (7:93).'%*° In the absence of a
copper catalyst, only a small amount of

4aa (5% yield) was obtained together with the recov- ered 1c (95%).

Various N-chloroamines 2 were subjected to the amina- tion reaction of 1c (E/Z = 7:93)
(Table 1). Cyclic N- chloroamines 2b f reacted smoothly to give the corre- sponding
products 3cb cf in yields ranging from 60 to 83% (entries 1 5} Acyclic N-chloroamines 2g
iwere also competent amination reagents (entries 6 8). On the other-hand, the reaction with
N-chloro(dibenzyl)amine (2j) gave the product 3cj in only-28% yield due to a competmg
chlorination reaction of 1c (entry 9).



Table 1. Cu(l)- Catal;/zed Amination Reaction of Silyl Ketene Acetal 1c with Various N-
Chloroamines 2b—j
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a Conditions: 1c (0.20 mmol), 2 (0.26 mmol), Cul (10 mol %), and 2, 20 -bipyridyl (10
mol %) in  CH3CN (2 mL) at rt for 12 h, unless otherwise noted. " Isolated yields
(averages of 2 runs). ¢ Using 0.30 mmol of 2g. ¢ Chlorination product was obtained in

40% yield. Next, the scope of silyl ketene acetals 1 was examined using 2a (lTabIe 2).
Whereas the reaction of R-alkyl-substi- tuted silyl ketene acetals was sluggish,”™ R-aryl-
substituted substrates successfully participated in the reaction. All three substrates 1d f with
isomeric tolyl substituents afforded the corresponding products 3da fa in good yields
(entries 1 3). Both electron-withdrawing and



-donating groups were allowed for the aryl substituent (entries 4 6). Thienyl-substituted
substrate 1j also gave the product 3ja in 67% yield (entry 7).

Table 2. Cu(l)-Catalyzed Amination Reaction of Various Silyl Ketene Acetals 1d—j with
4-Chloromorpholine 2a
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a Conditions: 1 (0.20 mmol), 2a (0.26 mmol), Cul (10 mol %), and 2,2-bipyridyl (10
mol %) in CHsCN (2 mL) at rt for 12 h, unless otherwise noted. ° Isolated yield. ©
Using 0.36 mmol of 2a.

The commercially available t-butyldimethylsilyl ketene acetal 5 produced glycine
derivative 6e in 59% yield (eq 1).
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The facile availability of N-chloroamines from second- ary amines permits a one-pot
two-step synthesis starting from amines on gram scale (eq 2). Treatment of morpho-
line (7a, 0.68 g, 7.8 mmol) with N-chlorosuccinimide (NCS, 1.04 g, 7.8 mmol) in CH3CN
at room temperature for 30 min generated N-chloromorpholine (2a) quantita- tively. Then,
1c (1.85 g, 6.0 mmol), Cul (10 mol %), and 2,2-bipyridyl (10 mol %) were sequentially
added to the



reaction mixture, which was further stirred at room tempera- ture for 12 h. The product 3aa
(1.14 g, 4.8 mmol) was isolated in 80% yield based upon 1c. The one-pot synthesis demon-
strates another advantage from the practical standpoint.

This one-pot two-step method was useful particularly when an N-chloroamine was too

unstable to be isolated, as
O
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Upon the basis of experimental precedents in the litera- ture, three plausible pathways
are conceived for produc- tion of 3 from 1 and 2 (Scheme 2). In pathway (1), silyl

Scheme 2. Proposed Mechanisms for the Formation of 3 from 1 and 2
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ketene acetal 1 initially undergoes transmetalation®® with copper(l) to generate
nucleophilic copper(l) enolate A.1"The following reaction with N-chloroamine 2 gives R-
amino ester 3. Pathway (I1) involves single-electron trans- fer (SET) from copper(l) to N-
chloroamine 2.*® The resulting aminyl radical intermediate B couples with silyl ketene
acetal 1. SET back to copper(ll) produces R-amino ester 3 together with
triisopropylchlorosilane and copper(l). In pathway (l1I1), N-chloroamine 2 initially
undergoes OX|dat|ve addition to copper(l) to generate amino copper-
(111) species D.*" Transmetalation with silyl ketene acetal 1 furnishes copper(l11) enolate
E, and reductive elimina- tion ensues.

Whereas a catalytic reaction of 1c with 2a using Cul/ 1,10-phenanthroline gave 3aa in

1c (E/Z=7:93) 0
NCS 10 mol % Ph \])k
I\ (1.3 equiv) Cul/bipyridyl OMe
o} N-H = |2a > N 2)
n_/ CH3CN, rt CH3CN, rt
7a 30 min (dark) 12h [ j

1.3 equiv
( aui) 3aa 80%



72% yield, a stoichio- metric reaction of 2a with copper/1,10-phenanthroline enolate A,
generated according to the Hartwig’s procedure,

yielded only 8% of 3aa together with methyl phenylace- tate (56% vyield) and 4,4
bimorpholine (43% yield based upon 2a) (eq 4).

(0]
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+
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0" 439%

In addition, the reaction of 1c with 2a under the standard conditions but in the presence of
TEMPO (1.0 equiv) afforded 3aa in almost same yield (72%). Thus, we prefer pathway
(111) as the most likely mechanistic scenario, albeit with no experimental evidence to
supportit.



under mild reaction conditions. This reaction provides an efficient synthetic route to R-amino
esters, which are sub- structures found in a variety of bioactive compounds.exemplified in eq
3. The R-amino ester 3ck was obtained in 73% vyield directly from 1,2,3,4-
tetrahydroisoquino- line (7k).
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