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ABSTRACT:

Seifert & van Kampen introduced the problem of describing the
fundamental group of a space X in terms of the fundamental groups of the
constituents x; of an open coveringln mathematics, the Seifert-van Kampen
theorem of Algebraic topology, sometimes it is called as van Kampen’s
theorem. It expresses the structure of the fundamental group.
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INTRODUCTION:

In mathematics, the Seifert-van Kampen theorem of Algebraic topology,
sometimes it is called as van Kempen’s theorem. It expresses the structure
of the fundamental group of a topological space X in terms of the
fundamental groups of two open, path connected subspaces u and v that
covers X. One can use van Kampan’s theorem to calculate fundamental

groups for topological spaces that can be decomposed into simpler spaces.

DEFINITION:

A topology on a set X is a collection tof subsets of X having the following
properties:

(1) @and X are int.

(2) The union of the elements of any subcollectionof
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TiS I T.

(3) The intersection of the elements of any finite
subcollection of zis int.
A set X for which a topology thas been specified is called a

topological space.

EXAMPLE:

Let X={a, b, c}.Then this set has 23 elements.Then,
={{}{a}{b}{c}{a,b}{b,c}{a,c}{a,b.c}}

To verify that tis a topology on X or not.

Axioms:1
@and X are in .
Axioms:2
@ U {a}={a} et
o uU{b}={b}er
OU{c}=A{c}er
{a} U {a, b} ={a, b} €

PUX=XET

Axioms:3

dN{a}=0€ 1

oN{b}=0e€r

dN{c}=0€r

{a} N{a,b}={a} e
All the three axioms are satisfied.

Therefore tis a topology.



DEFINITION:

If a set contains only one element it is calleda

singleton set.

Example:

A={0} , B={0} and the set of all even primes are all singleton sets.
DEFINITION:

A set B is called a subset of A if every element of B is

in A.

Example:

The set of all vowels is a subset of the set of all letters in English alphabet.

DEFINITION:

If X is any set, the collection of all subsets of X is a topology on X; it is
called the discrete topology.The collection consisting of X and @ only is

also a topology on X; we shall call it the indiscrete topology or the trivial

topology.
THEOREM:

Given a family of abelian groups {Gq},[1J, there exists an abelian group
G and a family of monomorphisms

iqg:Gg— G Such that G is the direct sum of the groups
la(Ga)-
Proof:

Consider first the cartesian product Smmj

it is an abelian group if we add two J-tuples by adding them coordinate-
wise.

Let G denote the subgroup of the cartesianproductconsisting of those tuples
(xq)o[1J such that xg= 04,theidentity element of G, for all but finitely



many values of a.Given an index j,define ig: Gg— Gby letting ig(x)
be the tuple that has xas its Sth coordinate and Ogas its ath coordinate for
all @ # B. 1t is immediate that igis a monomorphism.It is also immediate

that since each element x of G has only finitely many nonzero coordinates,
X can be written uniquely as a finite sum of elements from the group (G ).

LEMMA:

Let {G4}.1J be an indexed family of abelian groups; let G be an abelian
group; let ig: Gg— Gbe a family of homomorphisms. If each igis a
monomorphism and G is the direct sum of the groups (Gg), then G satisfies
the following extensioncondition:

Given any  abelian group H and any family of(x)

homomorphisms hg:Gg—H, there exists ahomomorphism h

: G — Hsuch that h o ig= hgfor each a.

Furthermore, h is unique. Conversely, suppose the groups
(Gg) generate G and the extension condition (*) holds. Then each igis a

monomorphism, and G is the direct sum of the groups (G).
Proof:

The only part that requires proof is the statement that if the extension

condition holds, then each iyis a monomorphism. That is proved asfollows.
Given an index B, set H = Gpand let hg: Go— Hbe the identity

homomorphism if a = §,and the trivial homomorphism if a #5.

Let h: G — Hbe the hypothesized extension. Then in particular, h oig= hg;

it follows that igis injective.

The Seifert-van Kampen Theorem



THEOREM:
Suppose X = UUV, where U and V are open sets of X. Suppose UNV is

path connected, and that Xxo€ UNV. Let i and j be the inclusion mappings of
U and V, respectively, into X. Then the images of the induced

homomorphism
Ix: m1(U,Xg) = m1(X,Xp) and jx: m1(V,Xo) — m1(X,Xo)
generate 1(X,Xp).
Proof:

This theorem states that, given any loop f in X based at X, it is path
homomorphic to a product of the form (g,*(g2*(...*gn))),where each gjis a

loop in X based at X, that lies either in U or inV.

Step 1:

We show there is a subdivision ap<a;<:-- <a, of the unit interval such that
f(a;)) € UNV and f([aj_.1,ai]) is contained either in U or in V, for each i.

To begin, choose a subdivision by,...,b, of [0,1] such that for each i, the set
f([bi.1,b;]) is contained in either U or

If f(b;) belongs to UNV for each i, we are finished. If not, let i be an index
such that f(b;)  UNV. Each of thesets

f([bi.1,bi]) and f([b; ,bi+1]) lies either in U or in V. If f(b;) € U, then both of
these sets must lie in U; and if f(b;) € V, both or then must lie in V. In either
case, we may delete b;, obtaining a new subdivision c,,...,c,.; that still
satisfies the condition that f([c;.,c;]) is contained either in U or in V, for
each .

A finite number of repetitions of this process leads to the desired

subdivision.



Step 2:

We prove the theorem. Given f, let ay,...,a, be the subdivision in Step 1.
Define f; to be the path in X that equals the positive linear map of [0,1] onto
[ai.1,ai] followed by f. Then f; is a path that lies either in U or in V,and

[f] = [ful*[fo]* - *[fol.

For each i, choose a path ajin UNV from X, to f(a;). (Here we use fact that
UNV is path connected.) Since f(ap) = f(a,) = Xo, we can choose ag and
anto be the constant path at X.

Now we set

gi=(ai-1*fi)*a
for each i. Then gjis a loop in X based at Xo whose image lies either in U or

in V. Direct computation showsthat

[91]%[2]* -+ *[Gn] = [fu]*[fa]* -+ *[fo].

.
7

CONCLUSION:

A Seifert-van Kampen theorem is apparently applied to describe the

Kumerian fundamental group of a semistable curve as the fundamental



group of a graph ofgroups
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