A STUDY ON HOMOTOPY THEORY

Dr.N.JANEESWARI¹,R.PREMKUMAR²,Dr.S.SANGEETHA³,N.MALINI⁴

Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous) Perambalur

ABSTRACT:

we are presented with two space X and Y the problem of deciding whether or not they are homeomorphic is formidable. We have either to construct a homeomorphism between X and Yor, worse still, to prove that no such homeomorphism exists. We therefry to reflect the problem algebraically.

INTRODUCTION:

For the sake of clarity, if we are presented with two space X and Y the problem of deciding whether or not they are homeomorphic is formidable. We have either to construct a homeomorphism between X and Y or, worse still, to prove that no such homeomorphism exists. We there try to reflect the problem algebraically.

DEFINITION:

Tow continuous maps $f_{0}, f_{1}: X \to Y$ are said to de homotopic if ther is a continuous map $F: X \times C \to Y$ such that for every $x \in X$.

$$F(x, 0) = f_0(x)$$
 and $F(x, 1) = f_1(x)$

The map F is called **homotopy** between f_0 and f_1 .

EXAMPLE:

Let $X=y=R^n$ and let $f_0(x)=x$ and $f_1(x)=0$ for $x\in R^n$. Let $F\colon R^n\times C\to R^n$ be defined by

$$F(x,t) = (1-t)x.$$

Then f is homotopy between f_0 and f_1 .

DEFINITION:

A continuous map $f: X \to Y$ is said to be **null homotopic** if it is homotopic to some constant map.

DEFINITION:

The equivalence class under \cong of f is denoted by [f], and is called the **homotopy class** of f.

DEFINITION:

A homotopy from 1_x to the constant map of X to $x_0 \in X$ is called a **contraction** of X to x_0

DEFINITION:

The mappings f and g are called **homotopy equivalence.** The spaces X and Y are also called **homotopy.**

THEOREM:

If Y is contractible, then every continuous mapping $f: X \to Y$ is homotopy to a constant.

Proof:

Since y is contractible, there exists a continuous mapping

 $F: Y \times C \to Y$ with F(y, 0) = y and $F(y, 1) = y_0$ fro every $y \in Y$, where y_0 is a fixed element.

Let $f: X \to Y$ be a continuous mapping.

Define $G: X \to Y$ by

G(x,t) = F(f(x),t) for $x \in X$.

G is continuous.

$$G(x,0) = F(f(x),0) = f(x)$$

$$G(x,1) = F(f(x),1) = y_0$$

This show that f is homotopy to $g: X \to Y$ where g is a constant mapping defined by $g(x) = y_0$ for every $x \in X$.

THEOREM:

The relation of being of the same homotopy type is an equivalence relation.

Proof:

Reflexivity and symmetry follow easily from the definition.

Let *X*, *Y* be the same homotopy type as Y and Z respectively.

There exist continuous mappings $f: X \to Y$, $G: Y \to X$, $f_1: Y \to Z$, $g_1: Z \to Y$ such that gf, fg, g_1f_1 and f_1g_1 are homotopy to the appropriate identity mappings.

Consider the transformations

$$f_2: X \to Z$$
 and $g_2: Z \to X$

Defined by

$$f_2(x) = f_1(f(x))$$
 and $g_2(x) = g(g_1(x))$.

If f_2 and g_2 are continuous and $g(g_1f_1)$ is homotopy to g, because (g_1f_1) is homotopic to the identity.

So, $g_2f_2 = g((g_1f_1)f)$ is homotopy to gf and which ultimately gives that g_2f_2 is homotopy to the identity.

Similarly, f_2g_2 is homotopy to the identity $I: Z \to Z$.

This shows that X is of the same homotopy type as Z.

THEOREM:

If x and y a topological spaces, X is path connected and $g: X \to Y$ is a continuous surjective mapping, then Y is path connected.

Proof:

Let $a, b \in Y$, then there are point $a', b' \in X$ such that g(a') = a and g(b') = b. Now X is path connected, so there is a path f from a' and b'.

Consider the composite function gf, which is clearly a path from a to b and this show that Y is path connected.

Lemma:

Let $h, k: X \to Y$ be continuous maps; let $(hx_0) = y_0$ and $(kx_0) = y_1$. if h and k are homotopic, there is a path α in Y from y_0 to y_1 such that $k_* = \hat{\alpha} \circ h_*$ indeed, if $H: X \to Y$ is the homotopy between h and k,then α is is the path $\alpha(t) = H(x_0, t)$.

Proof:

Let $f: I \to X$ be a loop in X based at x_0 we show that

$$k_*([f]) = \hat{\alpha}(h_*([f]).$$

This equation states that $[kof] = [\hat{\alpha}] * [h \ o \ f] * \hat{\alpha}$, or equivalently, that

$$[a] * [k \ o \ f] = [h \ o \ f] * [\alpha].$$

This is the equation we shall verify.

To begin, consider the loop f_0 and f_1 in the space $X \times I$ given by the equations

$$f_0(s) = (f(s), 0)$$
 and $f_1(s) = (f(s), 1)$.

Consider also the path in c in $X \times I$ given by the equation

$$c(t) = (x_0, t).$$

Then $H \ o \ f_0 = hof$ and $Hof_1 = kof$, while Hoc equals the path α

Let $F: I \times I \to X \times I$ be the map F(s,t) = (f(s),t). consider the following path.

$$\mathcal{L}_0(s) = (s, 0)$$
 and $\mathcal{L}_0(s) = (s, 1)$,

$$\gamma_0(t) = (0, t)$$
 and $\gamma_1(t) = (1, t)$.

then $Fo\beta_0 = f_0$ and $Fo\beta_1 = f_1$, while $Fo\gamma_0 = Fo\gamma_1 = c$.

The beoken-line path $\beta_0 * \gamma_1$ and $\gamma_0 * \beta_1$ and path in $I \times I$ from (0,0) to (1,1);

Since $I \times I$ is convex ,there is path homotopy G between them. Then FoG is a path homotopy in $X \times I$ between $f_0 * c$ and $c * f_1$. And $H \circ (FoG)$ is a path homotopy in y between

$$(Hof_o)*(Hof) = (hof)*\alpha$$
 and

$$(Hoc)*(Hof_1) = \alpha*(kof),$$

CONCLUSION:

This paper concluded that briefly explained about homotopy theory and also its used in the fields are particularly mathematics, biology, science and engineering and etc.

BIBLIOGRAPHY:

*Hilton, P.J.; An introduction to homotopy, cambridg university prees London, 1953.

*Hu, S.T.; Homotopy theory, Academic press, N.Y,1956.

*Brayton gray,.; Homotopy theory, Academic press, N.Y, San Francisco, London, 1975.

*Paulselick.,: Introduction to homotopy theory, American mathematical society, 1950.

*D.Chatterjee.,: TOPOLOGY general and algebraic, first edition ,2007.