A STUDY ON HOMOTOPY THEORY $\mathbf{Dr}.\mathbf{N}.\mathbf{JANEESWARI}^{1},\mathbf{R}.\mathbf{PREMKUMAR}^{2},\mathbf{Dr}.S.\mathbf{SANGEETHA}^{3},\mathbf{N}.\mathbf{MALINI}^{4}$ **Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous)**

Perambalur

ABSTRACT:

wearepresentedwithtwospaceXandYtheproblemofdecidingwhetherornottheyarehomeomorphicisf ormidable.WehaveeithertoconstructahomeomorphismbetweenXandYor,worsestill,toprovethatn osuchhomeomorphismexists.Wetheretrytoreflecttheproblemalgebraically.

INTRODUCTION:

For the sake of clarity, if we are presented with two space X and Y the problem of deciding whether or not they are homeomorphic is formidable. We have either to construct a homeomorphism between X and Y or, worse still, to prove that no such homeomorphism exists. We there try to reflect the problem algebraically.

DEFINITION:

Tow continuous maps $f_0, f_1: X \to Y$ are said to de homotopic if ther is a continuous map F: $X \times C \rightarrow Y$ such that for every $x \in X$.

 $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$

The map F is called **homotopy** between f_0 and f_1 .

EXAMPLE:

Let $X = y = R^n$ and let $f_0(x) = x$ and $f_1(x) = 0$ for $x \in R^n$. Let $F: R^n \times C \to R^n$ be defined by

$$
F(x,t)=(1-t)x.
$$

Then f is homotopy between f_0 and f_1 .

DEFINITION:

A continuous map $f: X \to Y$ is said to be **null homotopic** if it is homotopic to some constant map.

DEFINITION:

The equivalence class under \cong of f is denoted by [f], and is called the **homotopy class** of f .

DEFINITION:

A homotopy from 1_x to the constant map of X to $x_0 \in X$ is called a **contraction** of X to x_0

DEFINITION:

The mappings f and g are called **homotopy equivalence.** The spaces X and Y are also called **homotopy.**

THEOREM:

If Y is contractible, then every continuous mapping $f: X \to Y$ is homotopy to a constant.

Proof:

Since y is contractible, there exists a continuous mapping

 $F: Y \times C \rightarrow Y$ with $F(y, 0) = y$ and $F(y, 1) = y_0$ fro every $y \in Y$, where y_0 is a fixed element.

Let $f: X \to Y$ be a continuous mapping.

Define $G: X \rightarrow Y$ by

 $G(x, t) = F(f(x), t)$ for $x \in X$.

 \tilde{G} is continuous.

$$
G(x,0)=F(f(x),0)=f(x)
$$

 $G(x, 1) = F(f(x), 1) = y_0$

This show that f is homotopy to $g: X \to Y$ where g is a constant mapping defined by $g(x) = y_0$ for every $x \in X$.

THEOREM:

The relation of being of the same homotopy type is an equivalence relation.

Proof:

Reflexivity and symmetry follow easily from the definition.

Let X, Y be the same homotopy type as Y and Z respectively.

There exist continuous mappings $f: X \to Y$, $G: Y \to X$, $f_1: Y \to Z$, $g_1: Z \to Y$ such that gf , fg , g_1f_1 and f_1g_1 are homotopy to the appropriate identity mappings.

Consider the transformations

 $f_2: X \to Z$ and $g_2: Z \to X$

Defined by

$$
f_2(x) = f_1(f(x))
$$
 and $g_2(x) = g(g_1(x))$.

If f_2 and g_2 are continuous and $g(g_1f_1)$ is homotopy to g, because (g_1f_1) is homotopic to the identity.

So, $g_2 f_2 = g((g_1 f_1) f)$ is homotopy to g f and which ultimately gives that $g_2 f_2$ is homotopy to the identity.

Similarly, $f_2 g_2$ is homotopy to the identity $I: Z \rightarrow Z$.

This shows that X is of the same homotopy type as Z .

THEOREM:

If x and y a topological spaces, X is path connected and $g: X \to Y$ is a continuous surjective mapping, then Y is path connected.

Proof:

Let $a, b \in Y$, then there are point $a', b' \in X$ such that $g(a') = a$ and $g(b') = b$. Now X is path connected, so there is a path f from a' and b' .

Consider the composite function gf , which is clearly a path from a to b and this show that Y is path connected.

Lemma:

Let $h, k: X \to Y$ be continuous maps; let $(hx_0) = y_0$ and $(kx_0) = y_1$. if h and k are homotopic, there is a path α in Y from y_0 to y_1 such that $k_* = \hat{\alpha} \circ h_*$ indeed, if $H : X \to Y$ is the homotopy between h and k, then a is is the path $a(t) = H(x_0, t)$.

Proof :

Let $f: I \to X$ be a loop in X based at x_0 , we show that

$$
k_*([f]) = \hat{\alpha}(h_*([f]).
$$

This equation states that $[kof] = [\hat{\alpha}] * [h \circ f] * \hat{\alpha}$, or equivalently, that

$$
[a] * [k \circ f] = [h \circ f] * [\alpha].
$$

This is the equation we shall verify.

To begin, consider the loop f_0 and f_1 in the space $X \times I$ given by the equations

$$
f_0(s) = (f(s), 0)
$$
 and $f_1(s) = (f(s), 1)$.

Consider also the path in c in $X \times I$ given by the equation

$$
c(t)=(x_0,t).
$$

Then *H* $o f_0 = hof$ and $Hof_1 = kof$, while *Hoc* equals the path α .

Let $F: I \times I \to X \times I$ be the map $F(s, t) = (f(s), t)$. consider the following path.

 $\beta_0(s) = (s, 0)$ and $\beta_0(s) = (s, 1)$,

$$
\gamma_0(t) = (0, t)
$$
 and $\gamma_1(t) = (1, t)$.

then $F \circ \beta_0 = f_0$ and $F \circ \beta_1 = f_1$, while $F \circ \gamma_0 = F \circ \gamma_1 = c$.

The beoken-line path $\beta_0 * \gamma_1$ and $\gamma_0 * \beta_1$ and path in $I \times I$ from (0,0) to (1,1);

Since $I \times I$ is convex, there is path homotopy G between them. Then $F \circ G$ is a path homotopy in $X \times I$ between $f_0 * c$ and $c * f_1$. And $H o(F \circ G)$ is a path homotopy in y between

 $(Hof_o) * (Hof) = (hof) * \alpha$ and

$$
(Hoc)*(Hof_1)=\alpha*(kof),
$$

CONCLUSION:

This paper concluded that briefly explained about homotopy theory and also its used in the fields are particularly mathematics, biology, science and engineering and etc.

BIBLIOGRAPHY:

*Hilton, P.J,; An introduction to homotopy, cambridg university prees London, 1953.

*Hu, S.T.; Homotopy theory, Academic press, N.Y,1956.

*Brayton gray,.; Homotopy theory, Academic press, N.Y, San Francisco, London, 1975.

*****Paulselick.,: Introduction to homotopy theory, American mathematical society, 1950.

*****D.Chatterjee.,: TOPOLOGY general and algebraic, first edition ,2007.