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Abstract:  Our purpose is to give an overview of weak topologies in a fuzzy 

locally convex space. Firstly, we introduce locally convex spaces in fuzzy 

context. Furthermore fuzzy version of a semi - norm is obtained. Finally, we 

introduce a weak topology on a fuzzy locally convex space and the weak star 

topology on its dual as a generalization of usual weak topology. A special 

attention is also given to some properties of X- topology on X*, called fuzzy 

weak star topology. 
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1. Introduction 

The concept of fuzzy vector space and fuzzy topological vector space was 

developed considerably since the introduction of fuzzy set by Zadeh[]. In this 

paper, we are devoted to the study of the weak topology on a fuzzy locally 

convex space.Suppose X is a fuzzy topological vector space with topology  

whose dual X* separates points on X. The X* fuzzy topology is of X is called 

the fuzzy weak topology w of X. Let Xw denote X topologized by this weak 

topology w. Then Xw is a fuzzy locally convex space whose dual is also X*. 

 

2.  Preliminaries 

 

In this section some definitions and properties are reviewed that are needed for 

the development of the present article. We give a brief account of the 

developments right from fuzzy convex space and fuzzy topological spaces up to 

fuzzy topological vector space.  
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Now we shall define additive operations sum, difference and conjunction on I 

(X), the class of fuzzy sets 

Definition: The sum of two fuzzy sets A and B in a set X ,denoted by AB  ,is a 

fuzzy set in X defined by  (A  B) (x) = min ( 1, A(x) + B(x) ) for, the 

difference, denoted by AϴB, is a fuzzy set in X defined by (AϴB)(x) = max (0 , 

A(x) - B(x) ), the conjunction, denoted by A&B , is a  fuzzy set in X defined by  

(A & B) (x) = max(0, A(x) + B(x) -1)  for all x  X   

Definition: [4] A g-fuzzy topology on a set X is a family  of fuzzy sets X such 

that  

1 X     and Φ   

2 A & B     whenever A , B       and 

   3   ( A )    for any subfamily {A}J  in                 

The ordered pair (X, ), is called a g-fuzzy topological space or gfts. Members 

of   are called g- open fuzzy sets in X. The complement of a g- open fuzzy sets 

are called g-closed fuzzy sets. 

Definition: Let X be a non empty ordinary set 1, 2 be two fuzzy topologies 

on X. We say 1 is coarser than 2 or say 2 is finer than 1, if 1  2. 

Definition: Let A be a fuzzy set in a g-fuzzy topological space (X, ). Then the 

closure of A denoted by cl A and interior of A denoted by int A are defined by  

             cl A  =  inf{B : B  A, B
c
   } 

             int A  =  inf{B : B  A, B   } 

Definition: Let (X, ) and (Y,) be g-fuzzy topological spaces and f a function 

from X to Y. Then f is said to be g - fuzzy continuous if f 
-1 

(B)    for each 

B . 

Definition: Let X and Y be non-empty sets. Then by A  B we denote the fuzzy 

set X  Y for which  

 (A × B) (x, y) = min {A(x), B(y)} for every (x, y)  X  Y 

For all scalars k and all x  X, (kA) (x)  A (x) 
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Definition: A fuzzy set A in X is called a fuzzy subspace if (i) A + A  A; (ii) k 

A  A, for every scalar k. A fuzzy set, A on X is a fuzzy subspace if and only if 

for all x, y  X and for reals a, b, A(ax + by)   A(x)  A(y). 

 

Definition: A fuzzy set A  X is said to be  

(a) Convex if kA+ (l - k) A  A, for all k  [0, l];  

(b) Balanced if kx  A for all x  A and k   1. 

(c) Absorbing if for each x in X there is an  > 0 such that kx  A for k  (0, 

). A is absorbing then A (0) = 1. That is, an absorbing set must contain the 

origin. 

 

Definition: A fuzzy semi - norm on X is a fuzzy set A in X which is absolutely 

convex and absorbing. 

Proposition: Let A be a fuzzy set in X. Then, the following assertions are 

equivalent. 

 (1) A is convex (balanced).  

(2) A {k x + (1- k) y}   min {A(x), A(y)} for all x, y  X and all k  [0, 1];  

     A (k x)   A(x) for all k with k   1 

 For each d  [0, 1], the ordinary set Ad = {x  X: {A(x)  d} is convex and 

balanced.  

 

3. Fuzzy locally convex space 

 

A fuzzy topological vector space is a fuzzy vector space that is also a fuzzy 

topological space such that the linear structure and the topological structure are 

vitally connected. 

 

Definition: A fuzzy topology τ on a vector space X is said to be a fuzzy vector 

topology if  

(a) the map f: X × X → X defined by (x, y) → x + y is continuous 

(b) the map g: K × X → X, (k, x) → k x is continuous when  K has the usual 

topology and X×X, K × X are given the product fuzzy topologies.  
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Definition: A fuzzy locally convex space (FLCS) is a fuzzy topological vector 

Space whose topology is defined by a family of semi - norms   such that  

p{x: p(x) = 0 = (0).  

Clearly, p is a semi-norm.  

Here the condition is imposed precisely so that the topology defined by  is 

Hausdorff.  

Suppose that x, y be two distinct points in X so that x - y  0. Then there is a p 

in  such that p(x - y)  0; let p(x - y) =  > 0. 

If U = {z: p(x - z) < ½ } and V =  { z: p(y - z) < ½ }, then U  V =  and U 

and V are neighbourhoods of x and y respectively. 

 

Proposition: If X is a fuzzy vector space and p is a semi norm, then V = {x: p(x) 

< 1} is a convex balancing set which is absorbing at each of its points 

Proof: 

(a) Let x, y   V  p (x) < 1 and p (y) < 1.  

Then p[ k x + (1- k) y] = k p (x) + (1- k) p (y) < k + (1- k) = 1 

 kx + (1- k) y  V 

   Or kV+ (l - k) V  V, for all k  [0, l] 

So V is convex 

       (b)  Let x  V  p(x) < 1  p (k x) = k p(x) < 1 

             k x  V for all x  V and for all k   1 

           So V is balanced 

       c) If a, x  V, then k x  V for all x  V and for all k   1 

          

            a + k x  V for all x  V and for all k   1       

          So V is absorbing at each point 

Definition: For a fuzzy LCS X, let X* denote the space of fuzzy continuous 

linear functional f: X  F. Then X* is called dual space of X. If x*, y*  X* and 

  F, then (x* + y*) (x) = x*(x) + y*(x), x in X, defines an element x* + y* 

in X*. Thus X* has a natural vector-space structure. 
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For convenience we will use 〈x, x*〉 or 〈x*, x〉 to stand for x*(x), x in X 

and x* in X* 

 

4. Weak fuzzy topology  

 

Now we shall concentrate on the construction of weak fuzzy topologies 

generated by family of fuzzy semi - norms and some of their properties  

 

Definition: Let X be a fuzzy normed space. For each x*  X*, define px* (x) =  

x*(x) or 〈x, x*〉 . Then px* is a fuzzy semi-norm and if P = {px*: x*  X*}, 

P makes X into a fuzzy locally convex space. The topology defined on X by 

these fuzzy semi-norms is called the weak fuzzy (f wk) topology and is often 

denoted by or (X, X*).  

                    

Definition: Let X be a fuzzy normed space. For each x  X, define px : X*  

[0,) by px* (x) = x*(x) or 〈x, x*〉 . Then px is a fuzzy semi-norm and if P 

= {px: x  X}, P makes X* into a fuzzy locally convex space. The topology 

defined by these fuzzy semi-norms is called the weak-star fuzzy (or f weak* or f 

wk*) topology on X*. It is often denoted by (X, X*).  

                                        

Theorem: If X is a fuzzy locally convex space and A is a fuzzy convex subset of 

X, then cl A = f wk – cl A 

 

Proof: If τ is the original fuzzy topology on X, then f wk  τ, hence cl A  f wk 

– clA. 

Conversely, if x  X – clA, then there is an x* X*, an  in R, an  > 0 such 

that  

                      Re〈a, x*〉   <  +     Re 〈x, x*〉 for all a in cl A.  

Hence cl A  B  {y  X: Re 〈y, x*〉   }. But B is f wkclosed since x* is f 

wk– continuous.  

 f wk - cl A  B. Since x  B, x  f wk- cl A 

 

Corollary: A fuzzy convex subset of X is g- fuzzy closed if and only if it is 

fuzzy weakly closed. 
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If X is a complex fuzzy linear space, then the weak topology on X is the same 

as the weak topology it has if it is considered as a real fuzzy linear space. It is 

given as the next theorem.   

 

Theorem: Let X be a complex fuzzy locally convex space and let XR* denote 

the collection of all fuzzy continuous real linear functions on X. Let the semi-

norms on X be defined by using the elements of XR* and let  (X, XR*) be the 

corresponding topology. Then 

                           (X, X*) =(X, XR*) 

 

Proof:   

 

(X, X*) is the topology defined by the family of fuzzy semi-norms {px*: x*  

X*}, where  

                   px* (x) = 〈x, x*〉  and  

(X, XR*) is the topology defined by the family of fuzzy semi-norms {px*: x*  

X*}, where  

                   pxR*(x) = 〈x, xR*〉  

 

But 〈x, x*〉   and 〈x, xR*〉  are the same. The result follows. 

 

Proposition: If X is a fuzzy locally convex space. Then f wk is the smallest 

topology on X such that x* in X* is fuzzy continuous. 

 

Proposition: If X is a fuzzy locally convex space and X* be its duel space. Then 

f wk* is the smallest topology on X* such that for each x in X, x*   〈x, x*〉   

is fuzzy continuous. 

 

Definition: If A  X, the polar of A, denoted by A, the subset of X* defined by   

        A = {x*  X*:  〈a, x*〉  1 for all a in A}.  

Definition: If B  X*, the pre polar of B, denoted by B, the subset of X defined 

by   

        B = {x  X:  〈x, b*〉  1 for all b* in B}. 

Definition: If A  X, the bipolar of A is the set (A). It is also denoted by A. 

 

Proposition: If A  X, then polar of A is a fuzzy subspace of X* 
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Proof: 

A = {x*  X*:  〈a, x*〉  1 for all a in A} is a fuzzy set in X*. 

If x*, y*  X* and   F, then (x* + y*) (x) = x*(x) + y*(x), x in X, defines 

the element x* + y* in X*.  (i) A + A   A; (ii)  A  A, for every scalar. 

Proposition: If A  X, then polar of A is convex and balanced 

  Proof:  The polar of A is given by    

        A = {x*  X*:  〈a, x*〉  1 for all a in A}. 

Let x*, y*  X*. Then 〈a, x*〉  1, 〈a, y*〉  1 for all a in A  

 Now   〈a, k x* + (l - k) y* 〉 = k 〈a, x*〉 + (1- k) 〈a, y*〉  1 for all k 

 [0, l] 

 k x* + (l - k) y*   A   

Thus, k A  + (l - k) A   A   for all k  [0, l] 

Or A  is convex 

Also, 〈a, k x* 〉 = k 〈a, x*〉  1 for all k  [0, l] 

Thus, k A  A 

 A  is balanced            

 

Conclusion 

 

Here we introduced a brief view on the weak topologies (wk & wk*) on a fuzzy 

locally convex space. If  A , B  P(X) , then A  B = A  B  , A& B  = A  B  

and AϴB = A \ B. Then the ordinary topology become special case of g- fuzzy 

topology The weak topology on a complex fuzzy linear space is the same as the 

weak topology on a real fuzzy linear space. The weak* topologies have very 

important properties in fuzzy compactness.   
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