Periodic function on cyclic groups K.GANAMBIGAI¹,Dr.S.SANGEETHA²,Dr.S.SUBRAMANI³,P.SUGANYA⁴ Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous) Perambalur #### **ABSTRACT** This article review on periodic function on cyclic groups. In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. All finite groups are periodic. Every cyclic group is abelian. It states that every finitely generated abelian group is a finite direct product of primary cyclic group. #### **INTRODUCTION:** In group theory, a branch of abstract algebra, a cyclic group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contain an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. This element g is called a generator of the group. Every cyclic group of prime order is a simple group which cannot be broken down into smaller groups. Every cyclic group is abelian. ### **KEYWORDS**; Cyclic group, binary operation, abelian group, homomorphism #### **Definition** A function f:z \rightarrow c is said to be periodic with period n if F(x)=f(x+n) for all $x \square z$. ## **Example:** $f:z_n \rightarrow C$ is a function then, $f=\Box \ x_0, f\Box \ x_0 + \ldots + \Box \ x_{n\text{-}4}, f\Box \ x_{n\text{-}1}.$ ## **Definition** We call \square a fundamental (primitive) period of f if \square \square is the smallest amongst all periods. ## **Theorem** Given a meromoephic function f define on a region \square (as discussed about). Then there exists a unique meromorphic function F in \square which is the image of \square under $\square^{2\square\square\square/\square}$, such that $$f(2):=F(\Box)$$ $$= \Box$$ $$= \Box$$ $$= \Box$$ Is a \Box -periodic analytic function in the infinite horizontal strip $\{\,\Box\!:\!\Box^\Box\!<\!f(\Box)\!<\!\Box^\Box 2\,\,\}$ we can represent the co-efficient Where a is an arbitrary in the infinite strip $\{\Box:\Box^{\Box 1}< f(\Box)<\Box^{\Box 1}\}$ and the intergration is take along any path lying in the strip. Let f be a periodic function of period 2π such that $F(x)=\pi^2-x^2$ for $-\pi < x < \pi$ #### Solution: So f is periodic with period 2π and its graph is , We first if f is even or odd. $$F(-x) = \pi^2 - (-x)^2$$ $$=\pi^2-\mathbf{x}^2$$ $$=f(x)$$ Since f is even, $$\begin{array}{ll} B_n=0 \\ A=2/\pi & (\square)\cos(\square\square)\square\square \\ n & \int_{0} \end{array}$$ Using the formula for the Fourier coefficient we have , $$\Box = 2/\pi \int_{0}^{\Box} (\Box) \cos(nx) dx$$ $$= 2/\pi (\Box^{2} - \Box^{2}) \cos(nx) dx$$ $$= 2/\pi ([(\pi^{2} - x^{2}) \sin nx/n]^{\pi} - 0$$ $$= 2/\pi ([(\pi^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([(\pi^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}) \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) \sin \Box/n] + [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) - [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) - [$$ $$= 2/\pi ([-x^{2} - x^{2}] \sin n\pi/n - (\pi^{2}0) - [$$ $$= 2/\pi ([-x^{$$ The Fourier series of f is there fore $$f(x)=1/2(a_0+a_1cosx+a_2cos2x+)(b_1sinx+b_2sinx+.....)$$ $$=2\pi^2/3+4(cosx1/4cos2x+1/9cosx+1/16cos4x+1/25cos5x+....).$$ # The Fourier transform encodes this information as a function. Definition Let $f:z_n \rightarrow c$, define the Fourier transform $f:z_n \rightarrow c$ of f by $$\hat{\Box}(\overline{\Box}) = n < x_m, f > = \sum_{m=0}^{m-1} \frac{1}{m} = 0$$ It is immediate that the Fourier transform is a linear transformation $T:L(Z_n)\to L[Z_n]$ by the linearity of inner products in the second variable. ## proposition The Fourier transform is invertible more , precisely, f=1/n $\sum^{\Box -1}$ $\Box \overline{(\Box)}x_k$ The Fourier transform on cyclicogroups is used in signal and image processing. the idea is the values of \Box correspond to the wavelengths associated to be wave function f. one sets to zero all sufficiently small values of \Box , there by compressing the wave .To recover sometime close enough to the original wave ,as far as our eyes and ears are concerned, one applies Fourier inversion #### The Convolution Product We now introduce the convolution product on L(G), there by explaining the terminology groups algebra for L(G). #### **Definition** Let G be a finite group and $a,b \square L(G)$. then the convolution $a*b:G \longrightarrow C$ is defined by $$a*b(x)=\sum_{\square\in\square} (xy^{-1}) b(y).$$ our eventual goal is to show that convolution givens L(G) the structure of a rings. Before that, let us motivate the definition of convolution . To each element $g \square G$, we have associated the delta function \square_g what could be more natural than to try and assign a multiplication * to L(G) so that Let's show that convolution has this property. Indeed $$\square_{g}^{*}\square_{h}(x) = \sum \square \in \square \square (xy^{-1})\square_{h}(y)$$ And the only non-zero term is when y=h and $g=xy^{-1}=xh^{-1}$, i.e., x=gh. In this case , one gets 1,so we have proved: ## **Proposition** For $$g,h \square G$$, $\square_g * \square_h = \square_{gh}$. Now if $a,b \square L(G)$, then $$a=\sum_{\square\in\square}(\square)_g$$, $b=\sum_{\square\in\square}(\square)_g$ So if L(G) were really a ring, then the distributives law would yield $$a*b=\sum_{\square,h}_{\square}_{\square}_{\square}(g)b(h)_{\square_g}*_{\square_h}$$ $$=\sum_{\square,h}\in_{\square}\square(\square)\square(h)\square_{\mathbf{x}}$$ Applying the change of variables x = gh, y=h then given us $a*b=\sum (\sum (\sum (\sum (\sum (\sum (i))) (i))) = (i)$ $\Box(\Box\Box^{-1})b(y))\Box_x$ **Theorem** The set L(G) is a ring with addition taken pointwise and convolution as multiplication. More over, \square_1 is a multiplicative identity. **Proof:** We will only verify that \Box_1 is the identity and the associativity of convolution. The remaining verification that L(G) is a ring are straightforward and will be left to reader. Let $a \square L(G)$. Then $a*\Box_1(x)=\sum_{\square\in\square}\Box(xy^{-1})\Box_1(y^{-1})$ Since $\Box_1(y^{-1})=0$ except when y=1. Similarly, $\Box_1*a=a$. This proves \Box_1 is the identity. For associativity, let a,b,c \square L(G). Then $[(a*b)*c](x) = \sum_{\square \in [\square * \square](xy^{-1})} c(y)$ $= \sum \bigcap \in \bigcap \sum \bigcap \in \bigcap (xy^{-1}z^{-1})b(z)c(y).$ →(*) We $$= \sum \Box \in \Box \sum \Box \in \Box (xy^{-1}z^{-1})b(z)c(y). \qquad \rightarrow (*) \ V$$ make the change of variables $u=zy$ (and so $y^{-1}z^{-1}=u^{-1}$ $$,z=uy^{-1}).$$ The right hand of $(*)$ $$\sum \Box \in \Box \sum \Box \in \Box (xu^{-1})b(uy^{-1})c(y) = \sum \Box \in \Box (xu^{-1})\sum \Box \in \Box (uy^{-1})c(y)$$ $$= \sum \Box \in \Box (xu^{-1})[b*c](u)$$ $$= [a*(b*c)](x)$$ Completing the proof. ## **Proposition** $\mathbf{Z}(L(G))$ is the canter of L(G). That is, f:G \rightarrow C is a class function if and only if a*f=f*a for all $a \square L(G)$. #### **Proof:** Suppose first f is a class function and let $a \square L(G)$. Then $a * f(x) = \sum_{\square \in \square} \square (xy)$ 1)f(y) $$= \sum_{\square \in \square} (xy^{-1}) f(xy^{-1}x) \rightarrow (*)$$ Since f is a class function . setting z=xy⁻¹ turns the right hand side of (*) into $$\sum_{\square \in \square} (z) f(xz^{-1}) = \sum_{\square \in \square} \square (xz^{-1}) a(z)$$ $$= f^* a(x)$$ And hence a*f=f*a. For the other direction, let f be in the canter of L(G). ## Claim. f(gh) for all $g,h \square G$ Proof of claim: Observe that $$f(gh) \!\! = \!\! \sum_{\square \; \square \; \square \; \square} \; \square(gy^{\text{-}1}) \square_{h\text{-}1}(y)$$ $$= f^* \square_{h\text{-}1}(g)$$ $$=\square_{h-1}*f(g)$$ $$=\sum \Box \in \Box \Box h - 1(gy^{-1})f(y)$$ $$=f(hg)$$ Since \Box_{h-1} (gy⁻¹) is non-zero if and only if gy⁻¹=h⁻¹, that is ,y=hg. Complete the proof. #### Conclusion A cyclic group is a group with an element that has an opertion applied that produces the whole set. A cyclic group is the simplest group. A cyclic group could be a pattern found in nature for example in a snowflake ,number theory, and in pure mathematics ## **Bibliography** - [1] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Har-monic analysis on Finite groups, volume 108 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008. Representation theory, Gelfand pairs and Markovchains. - [2] Charles W. Curtis and Irving Reiner. Representation theory of Finite groups and associative algebras. Wiley Classics Library. John Wiley& Sons Inc., New York, 1988. Reprint of the 1962 original, A Wiley-IntersciencePublication. - [3] Giuliana Davido, Peter Sarnak, and Alain Valette. Elementary number theory, group theory, and Ramanujan graphs, volume 55 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003. - [4] Persi Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics LectureNotes |Monograph Series,11. Institute of Mathematical Statistics, Hayward, CA, 1988. - [5] Persi Diaconis. A generalization of spectral analysis with application to ranked data. Ann. Statist., 17(3):949{979,1989. - [6] Larry Dornho. Group representation theory. Part A: Ordinary representation theory. Marcel Dekker Inc., New York, 1971. Pure and Applied Mathematics, 7. William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge,1997.