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ABSTRACT 
 

 

This article review on periodic function on cyclic groups.In group 

theory,a branch of mathematics ,a torsion group or a periodic group is a group 

in which every element has finite order.All finite groups are periodic.Every 

cyclic group is abelian.It states thet every finitely generated abelian group is a 

finite direct product of primary cyclic group. 

 

INTRODUCTION: 

 

In group theory, a branch of abstract algebra , a cyclic group that is 

generated by a single element.That is, it is a set of invertible elements with a 

single associative binary operation,and it contain an element g such that every 

other element of the group may be obtained by repeatedly applying the group 

operation to g or its inverse.This element g is called a generator of the group. 

           Every cyclic group of prime order is a simple group which cannot be 

broken down into smaller groups.Every cyclic group is abelian. 
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Definition 

 

A function f:z→c is said to be periodic with period n if F(x)=f(x+n) for all xz. 

 

 

 



 
 

Example: 

 

f:zn→C is a function then, f=x0,fx0+….+xn-4,fxn-1. 

Definition 

 

We call  a fundamental (primitive) period of f if  is the smallest 

amongst all periods. 

Theorem 

 

Given a meromoephic function f define on a region  ( as discussed 

about ).Then there exists a unique meromorphic function F in  which is the 

image of  under �2���/�
, such that 



f(z)=F (�2���/�). 

 

 

Proof: 

 

Suppose f is meromorphic in  in the Z-plane with periodic 

. 

 

f(z)=f(log � 

 

f(z)=F(C) 

 

then clearly F is meromorphic in the z-plane when ever f(z) is meromorphic in 

the z-plane. 

Example 

 

Let o<q<1. Consider function 

 
f(z)=∑

∞
 �2 
(−1)

�
 � 2 ����

 
�=∞ 
 

which represent a 2� periodic entire function in c , in fact ,this is a complex 

form of a fouries series 

Let C=���
 

 
F(C)=∑

∞
 �2 

  (−1)
�� 2 

�� 

�=∞ 
 

Which can be show to converge in the function plan 0<g<+, 

 

Thus, we have 

 

f(z)=F(C) 

 

here we have =2π, thus ,the function F is analytic in 0<g<+. 

 

More generally , if the series , 



� 

f(2):=F() 

 

 
∞ 
�=∞ 

�� � 
2���� 
� , 

 

=�2���/� 

 

Is a -periodic analytic function in the infinite horizontal strip 

{:��
<f()<��2 } 

 

we can represent the co-efficient 

 
c =1/2πi  

1
 

�(�)
 d r <<r 

k ∫=0 ��+1 1 2 

=1/∫
�+� 

(�) � 
−2���� 
� dz, 

 

Where a is an arbitrary in the infinite strip {:��1 <f()<��1 } and the 

intergration is take along any path lying in the strip. 

Let f be a periodic function of period 2π such that F(x)=π
2
-x

2
 for -π<x<π 

Solution: 

 

So f is periodic with period 2π and its graph is , We first if f is even or odd. 

F(-x) =π
2
-(-x)

2
 

 

=π
2
-x

2
 

 

=f(x) 

 

Since f is even , 

 

Bn=0 

 A =2/π 
�

 (�) cos(��)�� 
n ∫0 

 

Using the formula for the Fourier coefficient we have , 

=
∑ 



0 

0 0 

0 

0 

0 

0 

�=0 

�� =2/π 
∫
� 

(�) cos(nx) dx 

 =2/π (�2
 − �2

) cos(nx) dx 
∫0 

 

=2/π([(π
2
-x

2
) sin nx/n] 

π
 - 

 

∫
� 

−2� sin nx/n dx) 

 

=2/π([(π
2
-π

2
)sin nπ/n–(π

2
0)sin/n]+[ 

∫
� 

2� sinnx/ndx ] 

 

=2/π 2/n 
∫
� 

� sin(nx) dx 

 =2/π 2/n([-x cos nx/n] 
π
 - 

�
(−cos nx/n) dx) 

0 ∫0 

 

=2/π 2/n 1/n ([-π cos nπ] +[sin nx /n
2
 ] 

π
 

 
=
 
{
-4/n

2
 if n is even, 4/n

2
 if n is odd It remains to calculate a0 

a = 2/π (�2
-x

2
) dx 

0 ∫0 

= 2/π[π
2
-x

2
] 

π
 

 

= 4π
2
/3 

 

The Fourier series of f is there fore 

 

f(x)=1/2(a0+a1cosx+a2cos2x+)(b1sinx+b2sinx+ ......... ) 

=2π
2
/3+4(cosx1/4cos2x+1/9cosx+1/16cos4x+1/25cos5x+……). 

 

The Fourier transform encodes this information as a function. 

Definition 

 

Let f:zn→c, define the Fourier transform f:zn→c of f by 

 

�̂(�̅)=n<xm,f>=∑
�−1

 �−2����
f(�̂) 

 

It is immediate that the Fourier transform is a linear transformation 



�=0 

T:L(Zn)→L[Zn] by the linearity of inner products in the second variable. 

 

 

proposition 

 

The Fourier transform is invertible more , precisely, f=1/n∑
�−1

 �̅(�̅)xk 

The Fourier transform on cyclic groups is used in signal and image processing. 

the idea is the values of �̌ correspond to the wavelengths associated to be wave 

function f . one sets to zero all sufficiently small values of �̂ , there by 

compressing the wave .To recover sometime close enough to the original wave 

,as far as our eyes and ears are concerned , one applies Fourier inversion 

The Convolution Product 

 

We now introduce the convolution product on L(G) , there by explaining 

the terminology groups algebra for L(G). 

Definition 

 

Let G be a finite group and a,bL(G). then the convolution a*b:G→C is 

defined by 

a*b(x)=∑�∈� �(xy
-1

) b(y). 



our eventual goal is to show that convolution givens L(G) the structure of a 

rings. Before that, let us motivate the definition of convolution . To each 

element gG, we have associated the delta function g. what could be more 

natural than to try and assign a multiplication * to L(G) so that 

Let’s show that convolution has this property. Indeed 

 

g*h(x)=∑�∈� ��(xy
-1

)h(y) 

And the only non-zero term is when y=h and g=xy
-1

=xh
-1

, i.e., x=gh. In this case 

, one gets 1,so we have proved: 

 

Proposition 

 

For g,hG, g*h=gh. 

 

Now if a,bL(G), then 

 

a=∑�∈� (�)g, b=∑�∈� �(�)g 

So if L(G) were really a ring, then the distributives law would yield 

a*b=∑�,ℎ� �(g)b(h)g*h 

=∑�,ℎ ∈� �(�) �(ℎ )x 



Applying the change of variables x = gh, y=h then given us a*b=∑�∈ (∑�∈� 

�(��−1
)b(y))x 

Theorem 

 

The set L(G) is a ring with addition taken pointwise and convolution as 

multiplication. More over ,1 is a multiplicative identity. 

Proof: 

 

We will only verify that 1 is the identity and the associativity of 

convolution. The remaining verification that L(G) is a ring are straightforward 

and will be left to reader . 

Let aL(G).Then 

 

a*1(x)=∑�∈� �(xy
-1

)1(y
-1

) 

=a(x) 

 

Since 1(y
-1

)=0 except when y=1 . Similarly,1*a=a. This proves 

1 is the identity . 

 

For associativity, let a,b,cL(G). Then 

 

[(a*b) *c] (x)=∑�∈ [� ∗  �](xy
-1

) c(y) 

=∑�∈� ∑�∈� (xy
-1

z
-1

)b(z)c(y). →(*) We 

make the change of variables u=zy (and so y
-1

z
-1

=u
-1

 

,z=uy
-1

). 

The right hand of (*) 

∑�∈� ∑�∈� (xu
-1

)b(uy
-1

)c(y)=∑�∈� �(xu
-1

)∑�∈� �(uy
-1

)c(y) 

=∑�∈� (xu
-1

)[b*c](u) 

=[a*(b*c)](x) 

Completing the proof. 



Proposition 

 

Z(L(G))  is  the canter of L(G).That is , f:G→C is a class 

function if and only if a*f=f*a for all aL(G). 

Proof: 

 

Suppose first f is a class function and let aL(G).Then a*f(x)=∑�∈� �(xy
-

1
)f(y) 

=∑�∈� (xy
-1

)f(xy
-1

x) →(*) 

Since f is a class function . setting z=xy
-1

 turns the right hand side of (*) into 

∑�∈� (z)f(xz
-1

) = ∑�∈� �(xz
-1

)a(z) 

= f*a(x) 

 

And hence a*f=f*a. 

 

For the other direction, let f be in the canter of L(G). 

 

Claim. f(gh) for all g,hG 

 

Proof of claim: 

Observe that 

 

f(gh)=∑�� �(gy
-1

)h-1(y) 

=f*h-1(g) 

=h-1*f(g) 

=∑�∈� �ℎ −1(gy
-1

)f(y) 

=f(hg) 

Since h-1 (gy
-1

) is non-zero if and only if gy
-1

=h
-1

, that is ,y=hg. 

Complete the proof. 



 

Conclusion 

 

A cyclic group is a group with an element that has an opertion applied that 

produces the whole set.A cyclic group is the simplest group.A cyclic group 

could be a pattern found in nature for example in a snowflake ,number 

theory,and in pure mathematics 
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