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ABSTRACT 

 Given a fuzzy subgroups 𝜇 of group G, one define that fuzzy left cosets and 

the fuzzy right cosets of G relative to 𝜇. We now define hyper fuzzy left cosets and 

hyper fuzzy right cosets analogously. 

INTRODUCTION 

In this paper we discuss about fuzzy subgroups 𝜇 of group G, one define that 

fuzzy left cosets and the fuzzy right cosets of G relative to 𝜇. We now define hyper 

fuzzy left cosets and hyper fuzzy right cosets analogously. 
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DEFINITION: 

Let 𝜇  be a hyper fuzzy subgroup of a group G. for any 𝑥 𝜖 𝐺. 

Define a mapping 𝜇 𝐿(𝑥): 𝐺 → 𝑃∗( 0,1 ) by 

𝜇 𝐿 𝑥  𝑔 = 𝜇 (𝑥−1𝑔)     ∀ 𝑔 𝜖 𝐺 

And also define a mapping 𝜇 𝑅(𝑥): 𝐺 → 𝑃∗( 0,1 ) by 

𝜇 𝑅 𝑥  𝑔 = 𝜇 (𝑔𝑥−1)     ∀ 𝑔 𝜖 𝐺 



 Then 𝜇 𝐿 𝑥  , 𝜇 𝑅 𝑥  are respectively called hyper fuzzy left coset and hyper 

fuzzy left coset and right coset of group G determined by x and 𝜇  

In crisp concept a subgroup H of a group G for which aH = Ha holds for all 𝑎 𝜖 𝐺. 

(i.e) left coset equals to corresponding right coset is called normal subgroup of G. 

Here we extend this concepts for hyper fuzzy set. 

 A hyper fuzzy subgroup 𝜇  of a group G is called normal if 𝑥, 𝑔 𝜖 𝐺. 

𝑖𝑛𝑓 𝜇 𝐿 𝑥  𝑔 = 𝑖𝑛𝑓 𝜇 𝑅 𝑥  𝑔  

And  

𝑠𝑢𝑝 𝜇 𝐿 𝑥  𝑔 = 𝑠𝑢𝑝 𝜇 𝑅 𝑥  𝑔  

inf 𝜇  𝑥−1𝑔 = inf 𝜇  𝑔𝑥−1  

sup 𝜇  𝑥−1𝑔 = sup 𝜇  𝑔𝑥−1  

So we gave formal definition of hyper fuzzy normal subgroup as follows. 

DEFINITION: 

 Let 𝜇  be a fuzzy subgroup of a group G. then 𝜇  is called a hyper fuzzy 

normal subgroup of G if 

inf 𝜇  𝑥𝑦 = inf 𝜇  𝑦𝑥  and  sup 𝜇  𝑥𝑦 = sup 𝜇  𝑦𝑥  ∀ 𝑥, 𝑦 𝜖 𝐺. 

PROPOSITION: 

The intersection of any two hyper fuzzy normal subgroups of a group G is 

also a hyper fuzzy normal subgroup of G. 

PROOF: 

 Let 𝜇  and 𝑣  be two hyper subgroups of a group G. 

𝜇 ∩ 𝑣  is hyper fuzzy subgroups of a graph G. 



Let 𝑥, 𝑦 𝜖 𝐺 then by definition 

     inf  (𝜇 ∩ 𝑣 ) 𝑥𝑦 = min⁡{inf 𝜇  𝑥𝑦 , inf 𝑣 (𝑥𝑦)}  

    = min⁡{inf 𝜇  𝑥𝑦 , inf 𝑣 (𝑦𝑥)  

    = inf(𝜇 ∩ 𝑣 )(𝑦𝑥)  

Similarly, 

     𝑠𝑢𝑝 𝜇 ∩ 𝑣   𝑥𝑦 = 𝑠𝑢𝑝(𝜇 ∩ 𝑣 ) 𝑦𝑥   

This show that (𝜇 ∩ 𝑣 ) is a hyper fuzzy normal subgroup of G. hence the 

proposition is proved. 

Hence the proposition is proved. 

PROPOSITION: 

 Let 𝜇  be hyper fuzzy subgroups of a group G and 𝑎 𝜖 𝐺 then the hyper fuzzy 

subset 𝜇 : 𝐺 → 𝑃∗( 0,1 ) defined by 𝑣  𝑥 = 𝑢 (𝑎𝑥−1𝑎). ∀ 𝑥 𝜖 𝐺 is hyper fuzzy 

subgroup of G. 

PROOF: 

Let 𝑥, 𝑦 𝜖 𝐺. then for all 𝑎 𝜖 𝐺 

 inf 𝑣  𝑥𝑦−1 = inf(𝑎−1𝑥𝑦−1𝑎) by definition of 𝑣  

   = inf 𝜇 (𝑎−1𝑥𝑎𝑎−1𝑦−1𝑎)  

   = inf 𝜇 ((𝑎−1𝑥𝑎)(𝑎−1𝑦𝑎)−1)  

   ≥ min 𝑖𝑛𝑓 𝜇 ((𝑎−1𝑥𝑎 , inf 𝜇 (𝑎−1𝑦𝑎)}  

Since 𝜇  is a hyper fuzzy subgroup. 

   = min{inf 𝑣  𝑥  , inf 𝑣 (𝑦)}  

Again, 



         sup 𝑣  𝑥𝑦−1 = sup 𝜇 (𝑎−1𝑥𝑎) , by definition of 𝑣  

= sup 𝜇 (𝑎−1𝑥𝑎𝑎−1𝑦−1𝑎)  

   = sup 𝜇 ((𝑎−1𝑥𝑎)(𝑎−1𝑦𝑎)−1)  

   ≥ min 𝑠𝑢𝑝 𝜇 (𝑎−1𝑥𝑎 , sup 𝜇 (𝑎−1𝑦𝑎)}  

Since 𝜇  is a hyper fuzzy subgroups. 

   = min{sup 𝑣  𝑥 , sup 𝑣 (𝑦)}  

Hence  𝜇  is a hyper fuzzy subgroups of G. 

DEFINITION: 

 Let 𝜇  and 𝑣  be two hyper fuzzy subgroups of a group G. we say that 𝑣  is 

conjugate to 𝜇  if for some 𝑎 𝜖 𝐺. we have that 

inf 𝑣  𝑥 = inf 𝜇 (𝑎−1𝑥𝑎)    ∀ 𝑥 𝜖 𝐺 

sup 𝑣  𝑥 = sup 𝜇 (𝑎−1𝑥𝑎)   ∀ 𝑥 𝜖 𝐺 

PROPOSITION: 

 For any hyper fuzzy subset 𝜇  of a group G and for all x, y 𝜖 𝐺 and for all 

𝑥, 𝑦 𝜖 𝐺 following are equivalent. 

(i)    inf 𝜇  𝑥𝑦𝑥−1 = inf 𝜇 (𝑦) and  

 sup 𝜇  𝑥𝑦𝑥−1 = sup 𝜇 (𝑦)  

(ii)          inf 𝜇  𝑥𝑦 = inf 𝜇 (𝑦𝑥) and 

       sup 𝜇  𝑥𝑦 = sup 𝜇 (𝑦𝑥)  

(iii)     inf  𝜇 𝐿(𝑥) 𝑦 = inf 𝜇 𝑅(𝑥)(𝑦) and 

   sup  𝜇 𝐿(𝑥) 𝑦 = sup 𝜇 𝑅(𝑥)(𝑦)  

PROOF: 

Let 𝑥, 𝑦 𝜖 𝐺 and be hyper fuzzy subgroups of a group G. 

 𝑖 ⟹ (𝑖𝑖)  



           inf 𝜇  𝑦 = inf 𝜇 (𝑥−1𝑥𝑦𝑥)  

                  = inf 𝜇 (𝑥𝑦)   using (i) 

And        sup 𝜇  𝑦𝑥 = sup 𝜇 (𝑥−1𝑥𝑦𝑥) 

       = sup 𝜇 (𝑥𝑦)  

 𝑖𝑖 ⟹ (𝑖𝑖𝑖)  

      inf 𝜇 𝐿 𝑥  𝑦 = inf 𝜇 (𝑥−1𝑦)  

       = inf 𝜇 (𝑦𝑥−1) using (ii) 

       = inf 𝜇 𝑅 𝑥 (𝑦)  

And           sup 𝜇 𝐿 𝑥  𝑦 = sup 𝜇 (𝑥−1𝑦) 

       = sup 𝜇 (𝑦𝑥−1)  using (ii) 

       = sup 𝜇 𝑅 𝑥 (𝑦)  

 𝑖𝑖𝑖 ⟹ (𝑖)  

            inf 𝜇 (𝑥𝑦𝑥−1) = 𝜇 𝑅 𝑥 (𝑥𝑦)  

       = inf 𝜇 𝐿 𝑥 (𝑥𝑦)   using (iii) 

       = inf 𝜇 (𝑥−1𝑥𝑦)  

       = inf 𝜇 (𝑦)  

And          sup 𝜇  𝑥𝑦𝑥−1 = sup 𝜇 𝑅 𝑥 (𝑥𝑦) 

        = sup 𝜇 𝐿 𝑥 (𝑥𝑦)  

      = sup 𝜇 (𝑥−1𝑥𝑦)  

      = sup 𝜇 (𝑦)  

Hence the proposition is proved. 



A hyper fuzzy subgroup 𝜇  of a group G is called conjugate hyper fuzzy 

subgroup if for all, 𝑥 𝜖 𝐺 we have that 

inf 𝜇  𝑥 = inf 𝜇 (𝑎−1𝑥𝑎) and  sup 𝜇  𝑥 = sup 𝜇 (𝑎−1𝑥𝑎) 

PROPOSITION: 

 A hyper fuzzy subgroup 𝜇  of a group G is normal iff 𝜇  is self conjugate 

hyper fuzzy subgroup. 

PROOF: 

Let 𝜇  be a hyper fuzzy normal subgroup of group G. then  

𝑖𝑛𝑓𝜇  𝑥𝑦 = 𝑖𝑛𝑓𝜇 (𝑦𝑥) and 

 𝑠𝑢𝑝 𝜇  𝑥𝑦 = 𝑠𝑢𝑝𝜇 (𝑦𝑥)    ∀ 𝑥, 𝑦 𝜖 𝐺 

We have  

    𝑖𝑛𝑓𝜇  𝑥𝑦𝑥−1 = 𝑖𝑛𝑓𝜇 (𝑦) and 

   𝑠𝑢𝑝 𝜇  𝑥𝑦𝑥−1 = 𝑠𝑢𝑝 𝜇 (𝑦) ∀ 𝑥, 𝑦 𝜖 𝐺 

So 𝜇  is a self conjugate hyper fuzzy subgroup. 

Conversely, 

Let 𝜇  is a self conjugate hyper fuzzy subgroup. 

Thus    𝑖𝑛𝑓𝜇  𝑥𝑦𝑥−1 = 𝑖𝑛𝑓𝜇 (𝑦) 

And           𝑠𝑢𝑝 𝜇  𝑥𝑦𝑥−1 = 𝑠𝑢𝑝 𝜇 (𝑦) ∀ 𝑥, 𝑦 𝜖 𝐺 

We have 

𝑖𝑛𝑓 𝜇  𝑥𝑦 = 𝑖𝑛𝑓 𝜇 (𝑦𝑥) and 

 𝑠𝑢𝑝 𝜇  𝑥𝑦 = 𝑠𝑢𝑝 𝜇 (𝑦𝑥) ∀ 𝑥, 𝑦 𝜖 𝐺 

So 𝜇  is a self conjugate hyper fuzzy normal subgroup 



This completes the proof. 

DEFINITION: 

Let 𝜇  hyper fuzzy subgroup of a group G. then normalizer of 𝜇  is defined by 

 𝑁 𝜇  = {𝑎 𝜖 𝐺 ∶  ∀  𝑥 𝜖 𝐺, inf⁡𝜇  𝑎−1𝑥𝑎 = inf⁡𝜇  𝑥 ,  

   𝑠𝑢𝑝 𝜇  𝑎−1𝑥𝑎 = 𝑠𝑢𝑝 𝜇  𝑥 }  

PROPOSITION:  

 Let 𝜇  hyper fuzzy subgroup of a group G. then  

(i) 𝑁(𝜇 ) is a subgroup of G 

(ii) 𝑉 ∶ 𝑁(𝜇 ) → 𝑃∗( 0,1 ) is defined by 

          𝑉  𝑥 = 𝜇 (𝑥)  ∀ 𝑥 𝜖 𝑁(𝜇 ) 

Then 𝑉  is a hyper fuzzy normal subgroup of 𝑁(𝜇 ) 

PROOF: 

Let 𝑥, 𝑦 𝜖 𝑁(𝜇 ). Then for all 𝑔 𝜖 𝐺 

     𝑖𝑛𝑓 𝜇  𝑥𝑦−1𝑔 𝑥𝑦  = 𝑖𝑛𝑓𝜇 (𝑦−1𝑥−1𝑔𝑥𝑦)  

        = 𝑖𝑛𝑓𝜇 (𝑥−1𝑔𝑥) 

Since 𝑦 𝜖 𝑁(𝜇 ), 𝑥−1𝑔𝑥 𝜖 𝐺 

                 = 𝑖𝑛𝑓𝜇 (𝑔) since 𝑥 𝜖 𝑁(𝜇 ) 

Similarly,  

     𝑠𝑢𝑝 𝜇  𝑥𝑦−1𝑔 𝑥𝑦  = 𝑠𝑢𝑝𝜇 (𝑦−1𝑥−1𝑔𝑥𝑦)  

        = 𝑠𝑢𝑝𝜇 (𝑥−1𝑔𝑥)  

Since 𝑦 𝜖 𝑁(𝜇 ), 𝑥−1𝑔𝑥 𝜖 𝐺 



        = 𝑠𝑢𝑝𝜇  𝑔 , since 𝑥 𝜖 𝑁(𝜇 ) 

So 𝑥𝑦 𝜖 𝑁(𝜇 ) 

Again          𝑔 𝜖 𝐺, 𝑥 𝜖 𝑁 𝜇  = 𝑥𝑔𝑥−1 𝜖 𝐺 

Then for all 𝑔 𝜖 𝐺 

    𝑖𝑛𝑓𝜇  𝑥𝑔𝑥−1 = 𝑖𝑛𝑓𝜇 (𝑥−1 𝑥𝑔𝑥−1 𝑥) 

Since 𝑥 𝜖 𝑁 𝜇  ,  𝑥𝑔𝑥−1 𝜖 𝐺 

         = 𝑖𝑛𝑓 𝜇 (𝑥−1𝑥𝑔𝑥−1𝑥)  

         = inf 𝜇 (𝑔)  

Similarly , then for all 𝑔 𝜖 𝐺 

   sup 𝜇  𝑥𝑔𝑥−1 = sup 𝜇 (𝑔)  

So, 𝑥−1 𝜖 𝑁(𝜇 ) 

Hence 𝑁(𝜇 ) is a subgroup of G. 

(ii) since 𝜇  is a hyper fuzzy subgroup of G and we prove that is a subgroup 

in G. 

Then 𝜇  is a hyper fuzzy group of 𝑁 𝜇   

Hence (𝑣 ) is a hyper fuzzy group of 𝑁(𝜇 ) 

Now we have to prove 𝑣  is a normal. 

Since 𝑁(𝜇 ) is a subgroup of G 𝑥, 𝑦 𝜖 𝑁(𝜇 ) 

𝑥−1𝑦𝑥 𝜖 𝑁(𝜇 ) 

Now by definition of 𝑣  we have for all 𝑥, 𝑦 𝜖 𝑁(𝜇 ) 

inf 𝑣  𝑥−1𝑦𝑥 = inf 𝜇 (𝑥−1𝑦𝑥) 



Since 𝑥−1𝑦𝑥 𝜖 𝑁(𝜇 ) 

    = inf 𝜇 (𝑦), since 𝑥 𝜖 𝑁(𝜇 ) 

    = inf 𝑣  𝑦 , since 𝑦 𝜖 𝑁(𝜇 ) 

Similarly, 

sup 𝑣  𝑥−1𝑦𝑥 = sup 𝜇  𝑥−1𝑦𝑥  

Since 𝑥−1𝑦𝑥 𝜖 𝑁(𝜇 ) 

    = sup 𝜇 (𝑦),  since 𝑥 𝜖 𝑁(𝜇 ) 

    = sup 𝑣 (𝑦),  since y 𝜖 𝑁(𝜇 ) 

4Hence 𝑣  is a self conjugate hyper fuzzy subgroup of N(𝜇 ). 

Hence 𝑣  is a hyper fuzzy normal subgroup of N(𝜇 ) 

This completes the proof. 

CONCLUSION: 

 The concept of fuzzy set is very simple and easy to understand. In a short 

span of time. We have done only a little drops in this field. In this paper we have 

done the basic definitions of fuzzy concepts on normal and hyper subgroups.  
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