NORMAL FUZZY SUB GROUPS

C.MAHENDRAN¹,R.PREMKUMAR²,Dr.M.MAHARIN³,P.SUGANYA⁴

Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous) Perambalur

ABSTRACT

Given a fuzzy subgroups μ of group G, one define that fuzzy left cosets and the fuzzy right cosets of G relative to μ . We now define hyper fuzzy left cosets and hyper fuzzy right cosets analogously.

INTRODUCTION

In this paper we discuss about fuzzy subgroups μ of group G, one define that fuzzy left cosets and the fuzzy right cosets of G relative to μ . We now define hyper fuzzy left cosets and hyper fuzzy right cosets analogously.

KEY WORDS

Hyper fuzzy, Sub group, Sub set, Co-set

DEFINITION:

Let $\hat{\mu}$ be a hyper fuzzy subgroup of a group G. for any $x \in G$.

Define a mapping $\hat{\mu}_{L(x)}: G \to P^*([0,1])$ by

$$\hat{\mu}_{L(x)}(g) = \hat{\mu}(x^{-1}g) \quad \forall \ g \in G$$

And also define a mapping $\hat{\mu}_{R(x)}: G \to P^*([0,1])$ by

$$\hat{\mu}_{R(x)}(g) = \hat{\mu}(gx^{-1}) \quad \forall \ g \in G$$

Then $\hat{\mu}_{L(x)}$, $\hat{\mu}_{R(x)}$ are respectively called hyper fuzzy left coset and hyper fuzzy left coset and right coset of group G determined by x and $\hat{\mu}$

In crisp concept a subgroup H of a group G for which aH = Ha holds for all $a \in G$. (i.e) left coset equals to corresponding right coset is called normal subgroup of G.

Here we extend this concepts for hyper fuzzy set.

A hyper fuzzy subgroup $\hat{\mu}$ of a group G is called normal if $x, g \in G$.

$$\inf \hat{\mu}_{L(x)}(g) = \inf \hat{\mu}_{R(x)}(g)$$

And

$$\sup \hat{\mu}_{L(x)}(g) = \sup \hat{\mu}_{R(x)}(g)$$

$$\inf \hat{\mu}(x^{-1}g) = \inf \hat{\mu}(gx^{-1})$$

$$\sup \hat{\mu}(x^{-1}g) = \sup \hat{\mu}(gx^{-1})$$

So we gave formal definition of hyper fuzzy normal subgroup as follows.

DEFINITION:

Let $\hat{\mu}$ be a fuzzy subgroup of a group G. then $\hat{\mu}$ is called a hyper fuzzy normal subgroup of G if

$$\inf \hat{\mu}(xy) = \inf \hat{\mu}(yx)$$
 and $\sup \hat{\mu}(xy) = \sup \hat{\mu}(yx) \ \forall \ x, y \in G$.

PROPOSITION:

The intersection of any two hyper fuzzy normal subgroups of a group G is also a hyper fuzzy normal subgroup of G.

PROOF:

Let $\hat{\mu}$ and \hat{v} be two hyper subgroups of a group G.

 $\hat{\mu} \cap \hat{v}$ is hyper fuzzy subgroups of a graph G.

Let $x, y \in G$ then by definition

$$\inf (\hat{\mu} \cap \hat{v})(xy) = \min \{ \inf \hat{\mu}(xy), \inf \hat{v}(xy) \}$$
$$= \min \{ \inf \hat{\mu}(xy), \inf \hat{v}(yx) \}$$
$$= \inf (\hat{\mu} \cap \hat{v})(yx)$$

Similarly,

$$sup(\hat{\mu} \cap \hat{v})(xy) = sup(\hat{\mu} \cap \hat{v})(yx)$$

This show that $(\hat{\mu} \cap \hat{v})$ is a hyper fuzzy normal subgroup of G. hence the proposition is proved.

Hence the proposition is proved.

PROPOSITION:

Let $\hat{\mu}$ be hyper fuzzy subgroups of a group G and $a \in G$ then the hyper fuzzy subset $\hat{\mu}: G \to P^*([0,1])$ defined by $\hat{v}(x) = \hat{u}(ax^{-1}a)$. $\forall x \in G$ is hyper fuzzy subgroup of G.

PROOF:

Let $x, y \in G$. then for all $a \in G$

$$\inf \hat{v}(xy^{-1}) = \inf(a^{-1}xy^{-1}a) \text{ by definition of } \hat{v}$$

$$= \inf \hat{\mu} (a^{-1}xaa^{-1}y^{-1}a)$$

$$= \inf \hat{\mu} ((a^{-1}xa)(a^{-1}ya)^{-1})$$

$$\geq \min \{\inf \hat{\mu} ((a^{-1}xa), \inf \hat{\mu} (a^{-1}ya)\}$$

Since $\hat{\mu}$ is a hyper fuzzy subgroup.

$$= \min\{\inf \hat{v}(x), \inf \hat{v}(y)\}\$$

Again,

$$\sup \hat{v}(xy^{-1}) = \sup \hat{\mu}(a^{-1}xa), \text{ by definition of } \hat{v}$$

$$= \sup \hat{\mu}(a^{-1}xaa^{-1}y^{-1}a)$$

$$= \sup \hat{\mu}((a^{-1}xa)(a^{-1}ya)^{-1})$$

$$\geq \min\{\sup \hat{\mu}(a^{-1}xa), \sup \hat{\mu}(a^{-1}ya)\}$$

Since $\hat{\mu}$ is a hyper fuzzy subgroups.

=
$$\min\{\sup \hat{v}(x),\sup \hat{v}(y)\}$$

Hence $\hat{\mu}$ is a hyper fuzzy subgroups of G.

DEFINITION:

Let $\hat{\mu}$ and \hat{v} be two hyper fuzzy subgroups of a group G. we say that \hat{v} is conjugate to $\hat{\mu}$ if for some $a \in G$. we have that

$$\inf \hat{v}(x) = \inf \hat{\mu}(a^{-1}xa) \quad \forall \ x \in G$$

$$\sup \hat{v}(x) = \sup \hat{\mu}(a^{-1}xa) \quad \forall \ x \in G$$

PROPOSITION:

For any hyper fuzzy subset $\hat{\mu}$ of a group G and for all x, y ϵ G and for all x, y ϵ G following are equivalent.

(i)
$$\inf \hat{\mu}(xyx^{-1}) = \inf \hat{\mu}(y) \text{ and}$$

$$\sup \hat{\mu}(xyx^{-1}) = \sup \hat{\mu}(y)$$
(ii)
$$\inf \hat{\mu}(xy) = \inf \hat{\mu}(yx) \text{ and}$$

$$\sup \hat{\mu}(xy) = \sup \hat{\mu}(yx)$$
(iii)
$$\inf \hat{\mu}_{L(x)}(y) = \inf \hat{\mu}_{R(x)}(y) \text{ and}$$

$$\sup \hat{\mu}_{L(x)}(y) = \sup \hat{\mu}_{R(x)}(y)$$

PROOF:

Let $x, y \in G$ and be hyper fuzzy subgroups of a group G.

$$(i) \Longrightarrow (ii)$$

$$\inf \hat{\mu}(y) = \inf \hat{\mu}(x^{-1}xyx)$$

$$= \inf \hat{\mu}(xy) \text{ using (i)}$$
And
$$\sup \hat{\mu}(yx) = \sup \hat{\mu}(x^{-1}xyx)$$

$$= \sup \hat{\mu}(xy)$$

$$(ii) \Rightarrow (iii)$$

$$\inf \hat{\mu}_{L(x)}(y) = \inf \hat{\mu}(x^{-1}y)$$

$$= \inf \hat{\mu}(yx^{-1}) \text{ using (ii)}$$

$$= \inf \hat{\mu}_{R(x)}(y)$$
And
$$\sup \hat{\mu}_{L(x)}(y) = \sup \hat{\mu}(x^{-1}y)$$

$$= \sup \hat{\mu}(yx^{-1}) \text{ using (ii)}$$

$$= \sup \hat{\mu}(yx^{-1}) \text{ using (ii)}$$

$$= \sup \hat{\mu}_{R(x)}(y)$$

$$(iii) \Rightarrow (i)$$

$$\inf \hat{\mu}(xyx^{-1}) = \hat{\mu}_{R(x)}(xy)$$

$$= \inf \hat{\mu}(x^{-1}xy)$$

$$= \inf \hat{\mu}(y)$$
And
$$\sup \hat{\mu}(xyx^{-1}) = \sup \hat{\mu}_{R(x)}(xy)$$

$$= \sup \hat{\mu}_{L(x)}(xy)$$

$$= \sup \hat{\mu}_{L(x)}(xy)$$

$$= \sup \hat{\mu}(x^{-1}xy)$$

$$= \sup \hat{\mu}(x^{-1}xy)$$

$$= \sup \hat{\mu}(x^{-1}xy)$$

$$= \sup \hat{\mu}(y)$$

Hence the proposition is proved.

A hyper fuzzy subgroup $\hat{\mu}$ of a group G is called conjugate hyper fuzzy subgroup if for all, $x \in G$ we have that

$$\inf \hat{\mu}(x) = \inf \hat{\mu}(a^{-1}xa)$$
 and $\sup \hat{\mu}(x) = \sup \hat{\mu}(a^{-1}xa)$

PROPOSITION:

A hyper fuzzy subgroup $\hat{\mu}$ of a group G is normal iff $\hat{\mu}$ is self conjugate hyper fuzzy subgroup.

PROOF:

Let $\hat{\mu}$ be a hyper fuzzy normal subgroup of group G. then

$$inf \hat{\mu}(xy) = inf \hat{\mu}(yx)$$
 and $sup \hat{\mu}(xy) = sup \hat{\mu}(yx) \quad \forall x, y \in G$

We have

$$inf \hat{\mu}(xyx^{-1}) = inf \hat{\mu}(y)$$
 and $sup \hat{\mu}(xyx^{-1}) = sup \hat{\mu}(y) \ \forall \ x, y \in G$

So $\hat{\mu}$ is a self conjugate hyper fuzzy subgroup.

Conversely,

Let $\hat{\mu}$ is a self conjugate hyper fuzzy subgroup.

Thus
$$\inf \hat{\mu}(xyx^{-1}) = \inf \hat{\mu}(y)$$

And $\sup \hat{\mu}(xyx^{-1}) = \sup \hat{\mu}(y) \ \forall \ x, y \in G$

We have

$$\inf \hat{\mu}(xy) = \inf \hat{\mu}(yx)$$
 and $\sup \hat{\mu}(xy) = \sup \hat{\mu}(yx) \ \forall \ x, y \in G$

So $\hat{\mu}$ is a self conjugate hyper fuzzy normal subgroup

This completes the proof.

DEFINITION:

Let $\hat{\mu}$ hyper fuzzy subgroup of a group G. then normalizer of $\hat{\mu}$ is defined by

$$N(\hat{\mu}) = \{a \in G : \forall x \in G, \inf_{x \in G} \hat{\mu}(a^{-1}xa) = \inf_{x \in G} \hat{\mu}(x), \}$$

$$\sup \hat{\mu}(a^{-1}xa) = \sup \hat{\mu}(x)\}$$

PROPOSITION:

Let $\hat{\mu}$ hyper fuzzy subgroup of a group G. then

- (i) $N(\hat{\mu})$ is a subgroup of G
- (ii) $\hat{V}: N(\hat{\mu}) \to P^*([0,1])$ is defined by

$$\hat{V}(x) = \hat{\mu}(x) \ \forall \ x \in N(\hat{\mu})$$

Then \hat{V} is a hyper fuzzy normal subgroup of $N(\hat{\mu})$

PROOF:

Let $x, y \in N(\hat{\mu})$. Then for all $g \in G$

$$\inf \hat{\mu}(xy^{-1}g(xy)) = \inf \hat{\mu}(y^{-1}x^{-1}gxy)$$
$$= \inf \hat{\mu}(x^{-1}gx)$$

Since $y \in N(\hat{\mu}), x^{-1}gx \in G$

$$= \inf \hat{\mu}(g) \text{ since } x \in N(\hat{\mu})$$

Similarly,

$$\sup \hat{\mu}(xy^{-1}g(xy)) = \sup \hat{\mu}(y^{-1}x^{-1}gxy)$$
$$= \sup \hat{\mu}(x^{-1}gx)$$

Since $y \in N(\hat{\mu})$, $x^{-1}gx \in G$

=
$$\sup \hat{\mu}(g)$$
, since $x \in N(\hat{\mu})$

So $xy \in N(\hat{\mu})$

Again $g \in G, x \in N(\hat{\mu}) = xgx^{-1} \in G$

Then for all $g \in G$

$$\inf \hat{\mu}(xgx^{-1}) = \inf \hat{\mu}(x^{-1}(xgx^{-1})x)$$

Since $x \in N(\hat{\mu})$, $xgx^{-1} \in G$

$$= \inf \hat{\mu}(x^{-1}xgx^{-1}x)$$
$$= \inf \hat{\mu}(g)$$

Similarly, then for all $g \in G$

$$\sup \hat{\mu}(xgx^{-1}) = \sup \hat{\mu}(g)$$

So, $x^{-1} \in N(\hat{\mu})$

Hence $N(\hat{\mu})$ is a subgroup of G.

(ii) since $\hat{\mu}$ is a hyper fuzzy subgroup of G and we prove that is a subgroup in G.

Then $\hat{\mu}$ is a hyper fuzzy group of $N(\hat{\mu})$

Hence (\hat{v}) is a hyper fuzzy group of $N(\hat{\mu})$

Now we have to prove \hat{v} is a normal.

Since $N(\hat{\mu})$ is a subgroup of G x, $y \in N(\hat{\mu})$

$$x^{-1}yx \in N(\hat{\mu})$$

Now by definition of \hat{v} we have for all $x, y \in N(\hat{\mu})$

$$\inf \hat{v}(x^{-1}yx) = \inf \hat{\mu}(x^{-1}yx)$$

Since
$$x^{-1}yx \in N(\hat{\mu})$$

=
$$\inf \hat{\mu}(y)$$
, since $x \in N(\hat{\mu})$

= inf
$$\hat{v}(y)$$
, since $y \in N(\hat{\mu})$

Similarly,

$$\sup \hat{v}(x^{-1}yx) = \sup \hat{\mu}(x^{-1}yx)$$

Since $x^{-1}yx \in N(\hat{\mu})$

=
$$\sup \hat{\mu}(y)$$
, since $x \in N(\hat{\mu})$

=
$$\sup \hat{v}(y)$$
, since $y \in N(\hat{\mu})$

4Hence \hat{v} is a self conjugate hyper fuzzy subgroup of $N(\hat{\mu})$.

Hence \hat{v} is a hyper fuzzy normal subgroup of $N(\hat{\mu})$

This completes the proof.

CONCLUSION:

The concept of fuzzy set is very simple and easy to understand. In a short span of time. We have done only a little drops in this field. In this paper we have done the basic definitions of fuzzy concepts on normal and hyper subgroups.

REFFERENCE:

- 1. N.P.Mukherjee and P.Bhattacharya, fuzzy groups: some Group Theoretic Analogs. Information Sciences vol.39 (1984)
- 2. N.P.Mukherjee and Bhattacharya, "fuzzy normal subgroups and fuzzy cosets, Information Sciences vol.34 (1984)
- 3. Zimmermann, HJ (Hans Jurgen) 1934 Fuzzy sets theory and its applications / H.J Zimmermann 4th ed.p.cm.
- 4. Zadeh L.A fuzzy sets information and control 8 (1965).

- 5. N.P.Mukherjee and P.Bhattacharya, fuzzy groups: some GroupTheoretic Analogs.Information Sciences vol.39 (1984)
- 6. Zimmermann, HJ (Hans Jurgen) 1934 Fuzzy sets theory and its applications / H.J Zimmermann 4^{th} ed.p.cm.