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ABSTRACT

Given a fuzzy subgroups u of group G, one define that fuzzy left cosets and
the fuzzy right cosets of G relative to u. We now define hyper fuzzy left cosets and
hyper fuzzy right cosets analogously.

INTRODUCTION

In this paper we discuss about fuzzy subgroups u of group G, one define that
fuzzy left cosets and the fuzzy right cosets of G relative to u. We now define hyper
fuzzy left cosets and hyper fuzzy right cosets analogously.
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DEFINITION:
Let 4 be a hyper fuzzy subgroup of a group G. forany x € G.
Define a mapping f;): G = P*([0,1]) by
i@ =pkx"lg) VgeaG

And also define a mapping fig): G = P*([0,1]) by

Aren(@) =A(gx™™) VgeG



Then fi, ) , Are) are respectively called hyper fuzzy left coset and hyper
fuzzy left coset and right coset of group G determined by x and i

In crisp concept a subgroup H of a group G for which aH = Ha holds for all a € G.
(i.e) left coset equals to corresponding right coset is called normal subgroup of G.

Here we extend this concepts for hyper fuzzy set.

A hyper fuzzy subgroup f of a group G is called normal if x, g € G.

inf ,ﬁL(x)(g) = inf .aR(x)(g)

And
sup fiyx)(g) = sup figi)(9)
inf A(x~'g) = infA(gx™")
sup A(x~1g) = sup a(gx 1)
So we gave formal definition of hyper fuzzy normal subgroup as follows.
DEFINITION:

Let 4 be a fuzzy subgroup of a group G. then f is called a hyper fuzzy
normal subgroup of G if

inf fi(xy) = inffi(yx) and sup fi(xy) = sup a(yx) Vx,y€QG.
PROPOSITION:

The intersection of any two hyper fuzzy normal subgroups of a group G is
also a hyper fuzzy normal subgroup of G.

PROOF:
Let 4 and ¥ be two hyper subgroups of a group G.

f N ¥ is hyper fuzzy subgroups of a graph G.



Let x, y € G then by definition
inf (4 N D)(xy) = mininf i(xy), inf o (xy)}
= minfinf i (xy), inf ¥ (yx)
= inf(a N 7)(yx)
Similarly,
sup(a N D) (xy) = sup(i N D) (yx)

This show that (4 n D) is a hyper fuzzy normal subgroup of G. hence the
proposition is proved.

Hence the proposition is proved.
PROPOSITION:

Let /i be hyper fuzzy subgroups of a group G and a € G then the hyper fuzzy
subset /i: G — P*([0,1]) defined by #(x) = fi(ax'a). Vx e G is hyper fuzzy
subgroup of G.

PROOF:
Letx,yeG.thenforallae G
info(xy~1) = inf(a txy~1a) by definition of ¥
= inff (a 'xaa 'y 1a)
= infa ((a™'xa)(a " ya)™)
> min{inf i ((a 'xa),infa (a tya)}
Since fi is a hyper fuzzy subgroup.
= min{inf ¥ (x) , inf O(y)}

Again,



sup D(xy~1) = sup g(a"*xa), by definition of ¥
=supf (a txaa "ty la)
= sup A((a”'xa)(a"'ya)™)
> min{sup fi (a"*xa),sup i (a tya)}
Since i is a hyper fuzzy subgroups.
= min{sup U(x), sup ¥(y)}
Hence f is a hyper fuzzy subgroups of G.
DEFINITION:

Let 4 and ¥ be two hyper fuzzy subgroups of a group G. we say that ¥ is
conjugate to g if for some a € G. we have that

info(x) = infi(a 'xa) VxeG
sup 9(x) = supfi(a'xa) VxeG
PROPOSITION:

For any hyper fuzzy subset i of a group G and for all x, y € G and for all
x,y € G following are equivalent.

(i) inf i(xyx~1) = inf/i(y) and
sup fi(xyx~') = sup A(y)
(i) inf fi(xy) = inf fi(yx) and
sup A(xy) = sup i(yx)
(i) inf Ay () = inf g () and

sup Ay (y) = sup figen) (¥)
PROOF:

Let x, y € G and be hyper fuzzy subgroups of a group G.
() = (i)



inf A(y) = inf A(x " xyx)
= infa(xy) using (i)
And sup A(yx) = sup g(x"txyx)
= sup A(xy)
(i) = (iii)
inf 2, (y) = infa(x"1y)
= infA(yx~1) using (ii)
= inf fip) (V)
And sup fi () (y) = sup A(x~y)
= sup A(yx~1) using (ii)
= sup fir() (V)
(ii)) = (i)
inf ACeyx™) = fipge ()
= inf ;) (xy) using (iii)
= infa(x " 1xy)
= infa(y)
And sup A(xyx~") = sup (e (xy)
= sup fl,(x) (xy)
= sup A(x"'xy)
= sup 4(y)

Hence the proposition is proved.



A hyper fuzzy subgroup g of a group G is called conjugate hyper fuzzy
subgroup if for all, x € G we have that

inff (x) = infa (a 'xa) and sup i (x) = sup i (a” xa)
PROPOSITION:

A hyper fuzzy subgroup £ of a group G is normal iff g is self conjugate
hyper fuzzy subgroup.

PROOF:
Let /i be a hyper fuzzy normal subgroup of group G. then
infa(xy) = infA(yx) and
sup fi(xy) = supf(yx) Vx,yeG

We have

infi(xyx™") = inf(y) and

sup Alxyx™") = sup f(y) Vx,y €G
So /i is a self conjugate hyper fuzzy subgroup.
Conversely,

Let /i is a self conjugate hyper fuzzy subgroup.

Thus infa(xyx™) = infa(y)
And sup flxyx ™) =sup p(Y) Vx,y € G
We have

inf A(xy) = inf fi(yx) and
sup fi(xy) = sup f(yx) Vx,yeG

So fi is a self conjugate hyper fuzzy normal subgroup



This completes the proof.
DEFINITION:
Let & hyper fuzzy subgroup of a group G. then normalizer of /i is defined by
N(@) ={aeG: V xeG,infifi(a xa) = infii(x),
sup A(atxa) = sup A(x)}
PROPOSITION:
Let 4 hyper fuzzy subgroup of a group G. then

(i)  N(Q) is asubgroup of G
iy ¥V :N(a) - P*([0,1]) is defined by

V() = f(x) VxeN@)
Then V is a hyper fuzzy normal subgroup of N ()
PROOF:
Letx,ye N(f). Thenforall ge G
inf f(xy~g(xy)) = infa(y~'x"'gxy)
= infa(x""gx)
Since y e N(1), x 'gx e G
= infi(g) since x € N(i1)
Similarly,
sup f(xy~tg(xy)) = supa(y'x " gxy)
= supfi(x~" gx)

Sincey e N(1), x 1gx e G



= supfi(g), since x € N({i)
Soxy e N(f1)
Again geG,xeNQ) =xgxleG
Then forall g e G
infa(xgx™) = infa(x~ (xgx~)x)
Since x e N(41), xgx 1 eG
=inf A(x 1xgx~1x)
= inf a(g)
Similarly , then forall g € G
sup fi(xgx~") = sup fi(g)
So, x 1 e N(f)
Hence N (i) is a subgroup of G.

(i) since f is a hyper fuzzy subgroup of G and we prove that is a subgroup
in G.

Then i is a hyper fuzzy group of N(j1)
Hence (¥) is a hyper fuzzy group of N({)
Now we have to prove ¥ is a normal.
Since N(f) is a subgroup of G x,y € N(ft)
x"'yx e N(B)
Now by definition of ¥ we have for all x, y € N(j1)

inf o(x " 1yx) = infA(x " 1yx)



Since x1yx € N(f)
= inf fi(y), since x € N(i1)
= inf D(y), since y € N(j1)
Similarly,
sup D(x " 1yx) = sup a(x"1yx)
Since x1yx € N(4)
= sup f(y), since x € N(i1)
= sup ¥(y), sincey e N(f1)
4Hence ¥ is a self conjugate hyper fuzzy subgroup of N({).
Hence ¥ is a hyper fuzzy normal subgroup of N(4)
This completes the proof.
CONCLUSION:

The concept of fuzzy set is very simple and easy to understand. In a short
span of time. We have done only a little drops in this field. In this paper we have
done the basic definitions of fuzzy concepts on normal and hyper subgroups.
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