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ABSTRACT 

For a mathematician it is natural to ask, since we have such a 

nice tool as the Seifert matrix, what matrix properties do we know that, via 

𝐴1 𝑎𝑛𝑑 𝐴2, might yield a knot (or link) invariant. 

 

INTRODUCTION 

 

Mathematical studies of knots began in the 19𝑡ℎcentury with Carl Friedrich 

Gauss, who defined the linking integral (silver 2006). In the 1860s, Lord Kelvin's 

theory that atoms were knots in the aether led to Peter Guthrie Tait's creation of the 

first knot tables for complete classification. 

While tabulation remains an important task, today's researchers have a wide 

variety of background and goal. 

In the last 30 years knot theory has also become a tool in applied 

mathematics. Chemists and biologists use knot theory to understand. 

For example, chirality of molecules and the actions of enzymes on DNA. 
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The Alexander polynomial: 
 

For a mathematician it's natural to ask, since we've such a 

pleasant tool because the Seifert matrix, what matrix properties can we know that, 

via 

𝐴1 𝑎𝑛𝑑 𝐴2, might yield a knot (or link) invariant.  

 

Exercise 

Find an example that shows that the determinant, det 



M, of the Seifert matrix M of a knot K is not a knot 

invariant.  

Proof: 

However, we should not discard the idea of using the determinant. 

Let us, first, symmetrize the matrix M to form the matrix sum 𝑀 + 𝑀𝑇 

If we now check out absolutely the value of the determinant of 𝑀 + 𝑀𝑇, this 

does cause a link invariant. 

Proposition 

If M is the Seifert matrix of knot (or link) 

K, then |det(𝑀 + 𝑀𝑇)| 

is an invariant of the knot K.  

This invariant is named the determinant Of K. 

The Alexander-Conway polynomial: 

The reader will soon find, by experimenting with the 

above procedure, that. if we wish to use the Alexander polynomial to 

get a minimum of a partial knot table, the above procedure is sort 

of cumbersome 

However, due to the constant state of flux in knot theory and 

its interaction with other disciplines, the above problem can be obviated. 



In the late 1950s and 1960s, computers were transformed 

from a research project into a research tool. 

Although the number-crunching abilities of computers were of 

tremendous advantage, an extra impetus was still required to make the 

Alexander polynomial more computer friendly. 

This spark of ingenuity was provided by J.H. Conway within 

the late 1960s, when he devised a particularly efficient mechanical procedure 

to compute the Alexanderpolynomial.  

(With hindsight, if we carefully reread Alexander's original paper, it 

is possible to glean from it Conway's method. 

So perhaps, rather like in the case of fractals, this 

is a case of technology catching up with mathematical theory). 

 

Exercise 

Show that if 𝐾+is a μ-component link, then 𝐾− 

is also a μ-component link, but 𝐾0is either a (μ-1)-

component or a (μ + 1)-component link. 

Proof: 

The polynomial (𝑍), defined as above, is called the 

Conway polynomial. To actually show that the Laurent polynomial 

(Z) , 

obtained from Axioms 1 and 2, is well-defined and unique is 

quite troublesome (a complete proof can be found in [LM]). 

However, if we assume the well-definedness anduniqueness of 

(Z) , then by proving the following theorem, 

we can show that 𝑉𝐾(z) and the Alexander polynomial 

are essentially the same. 



Theorem 

Suppose that f(t) may be a Laurent polynomial that 

satisfies the subsequent two conditions: 

1) (1) = 1 

2) (𝑡) = (𝑡−1) 

Then there exists a knot that has as its Alexander polynomial 

f(t). Equivalently, if g(z) is an integer polynomial in Z² with 

g(O) = 1, 

then there exists a knot K that has as its Alexander-Conway 

polynomial g(z). 

The proof requires finding an appropriate orientable surface, 

F, with its Seifert matrix M of order k satisfying 

 

𝒕−𝒌∕𝟐𝐝𝐞𝐭(𝑴 − 𝒕𝑴𝑻) = 𝒇(𝒕). 

 

 

Theorem 

Suppose A is a nxn symmetric matrix with its entries real numbers. 

Then it is possible to find a real (with its entries real numbers) invertible matrix 

P such that 𝑃𝐴𝑃𝑇= B is a diagonal matrix. 

In ., addition, we may assume that 

det P = ±1. 

Proof: 

We may rephrase the essence of this theorem in the terminology. 

A symmetric matrix is 𝐴1-equivalent to a square matrix . 

which may be a bit tedious and can not shed any insight in what follows, we 

propose for instance the tactic of diagonalizing a matrix by means of a 

few of examples. 

These examples will, hopefully, indicate to the reader the idea of the 

proof, and thus the proof will become only an exercise in (the manipulations of) 

linear algebra. 



 

 

Theorem 

Suppose K is a knot, then ∆(𝑡) is a symmetric Laurent polynomial ie) 

∆(𝑡) = 𝑎−𝑛𝑡−𝑛 + 𝑎−(𝑛−1)𝑡−(𝑛−1) + ⋯ + 𝑎𝑛−1𝑡𝑛−1+𝑎𝑛𝑡𝑛 

and , 

 

𝑎−𝑛 = 𝑎𝑛, 𝑎−(𝑛−1) = 𝑎𝑛−1, … , 𝑎−1 = 𝑎1. 

Proof: 

Suppose that M is a seifert matrix of K and k is the order of M. Since 

K is a knot, k is necessary even. Therefore 

 

∆𝑘𝑡−1= 𝑡𝑘⁄2det(𝑀 − 𝑡−1𝑀𝑇) = 𝑡−𝑘⁄2det(𝑡𝑀 −𝑀𝑇) 

= (−1)−𝐾⁄2det(𝑀𝑇 − 𝑡𝑀) 
 

= 𝑡−𝑘⁄2det(𝑀 − 𝑡𝑀𝑇)𝑇 

= 𝑡−𝑘∕2det(M-𝑡𝑀𝑇) 

= ∆(t). 

 

 

Preposition 

|∆(−1)| is equal to the determinant of a knot K. 

Proof: 

 

|∆(−1)|= (−1)−𝐾∕2𝑑𝑒𝑡(𝑀 + 𝑀𝑇) 

= | det(𝑀 + 𝑀𝑇)| 



Theorem: 

If K is a knot, then n(k)=0 and σ(k) is always even. 

 

Proof: 

 

The seifert matrix, M for K is a square matrix of even order. 

 

Since det(𝑀 − 𝑀𝑇)= ∆𝐾(1)= 1 

det(𝑀 + 𝑀𝑇) is an odd integer and so non-zero 

consequently, n(𝑀 + 𝑀𝑇)= 0 

and n(k)= 0 
 

Therefore the number of eigen values of (𝑀 + 𝑀𝑇) that are not zero 

is even; 

 

Hence σ(𝑀 + 𝑀𝑇) is also even. 

 

Theorem:  

Suppose that 𝑀1 and 𝑀2 are the seifert matrices for a knot (or link) K. 

Further, if r and s are respectively, the orders of M₁ and M₂ then the 

following equality holds. 

 

𝑡−𝑟∕2det(𝑀1 − 𝑡𝑀1𝑇) = 𝑡−𝑠⁄2det(𝑀2 − 𝑡𝑀2𝑇) 

Proof: 

 

Therefore if M is a seifert matrix of K and its order is K, then 

 

𝑡−𝑟∕2det(𝑀 − 𝑡𝑀𝑇) 

Is an invariant of K. This invariant is known as the Alexander 

polynomial of K and is denoted by ∆(𝑡).It follows directly from our 

previous discussions that k=2g(F)- µ(k)-1, 



Where as before F is the seifert surface from which we have 

constructed M, and µ(k) is the number of components of the link K. 

 

In most cases ∆(t) has some terms with a negative exponent; 

 

However, if we multiply ∆(t) by a suitable factor then we can obtain a 

polynomial with only positive exponents. 

 

Sometimes it is preferable to work with such an interpretation of ∆(t).If 

K is a link with an even number of components, then K is odd. 

 

Therefore for such links ∆(t) is a polynomial with terms as powers of 

 

𝑡−1⁄2 = √𝑡 or (𝑡−1∕2 =1∕√𝑡).In these cases we define (𝒕𝟏∕𝟐)² = 𝒕. 

 

Theorem: 

Suppose K₁≠ 𝐾₂ is the connected sum of two knots (or links) K₁ and K₂ then 

 

∆𝑲₁ ≠ 𝑲₂(t)=∆𝑲₁∆𝑲₂ 
 
Proof: 

 

Firstly, create in the prescribed way the seifert surfaces F₁ and F₂ 

of respectively, K₁ and K₂. 

 

Then the orientable surface formed by joining these surfaces by a band 

becomes a seifert surface for K₁≠ 𝐾₂. 

 

If we suppose M₁ and M₂ are the seifert matrices of K₁ and K₂ obtained 

from F₁ and F₂, then M the seifert matrix of K₁≠ 𝐾₂ has following form, 

 

M 
𝑀1 0 

=[
0 𝑀2

] 



Therefore, 

 

det(𝑀 − 𝑡𝑀𝑇)=det(𝑀₁ − 𝑡𝑀₁𝑇) det(M₂−𝑡𝑀₂𝑇) 

If L is µ-component link, then we may write𝛁˪(𝒁) = 𝒁µ−𝟏 

g(z),where g(z) is an integer polynomial in z². 

 

So if we let, 

 

∆˪̃(t)=g(√𝒕−𝟏∕√𝒕) 

Then, 

∆˪̃(𝒕−𝟏)=∆˪̃(t) 

Andthus∆˪̃(t)isasymmetricintegerpolynomial,thispolynomialis called 

the hosokawa polynomial. 

 

Theorem: 

Any two s-equivalent non singular matrices can be joined by a 

sequence of the following two types of moves. 

 

1) right enlargement, then leftreduction. 

 

2) left enlargement, then right reduction. Moreover we can do all of 

type(i) first and then all oftype(ii). 

 

Proof : 

 

Thus we never have to deal with matrices much larger than the original 

one. 

 

The next step would be to examine a singular move of the type(i) or 

type(ii) and be able to write down all the matrices obtained by such a move 

from a given one. 

 

A priori this may seem improbable. since the vectors and used in the 

enlargement may vary over an infinite number of choices. 



But, in fact only a finite number of distinct (up to congruence) 

enlargements occur and these can be constructed in a finite number of 

steps. 

 

Suppose A has rank r, consider the free abelian group of 

rank r, written as columns of A. 

 

Let the quotient group be denoted V(A). Then V(A) is a finite 

group with det A elements. 

 

Let O(A)= {𝑷 𝒖𝒏𝒊𝒎𝒐𝒅𝒖𝒍𝒂𝒓 ∶ 𝑷𝑨𝑷′ = 𝑨} 
 
Be the orthogonal group of A. Then O(A) acts on V(A) by left multiplication. 

 

Given A clearly one can completely write down this situation. 

 

Corollary 

Two unimodular matrices are S-equivalent if and only if they are 

already congruent. 

This follows immediately from the above results and (𝐴) = 
0. 

For example fibered knots have unimodular seifert 

matrices. As illustration I would like to give 

some example.. 

CONCLUSION 

This provides a bridge between knot theory and graph theory. The study 



of Reidemeister moves, some classical invariants like crossing number, knotting 

number, bridge number and other invariants like the genus of a knot and some 

polynomial invariants have been discussed here. 

The survey has shown that the fundamental problem of knot theory was 

the process of distinguishing knots. Many invariants have been discovered to 

show that two knots are not equivalent. If an invariant of two knots is equal it did 

not necessarily imply that the knots are equivalent. 

This necessitated further research o Also classifying knots and studying 

them with a topological point of view is becoming essential in the inter 

disciplinary field as well leading to a great scope to explore thefield. 
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