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 ABSTRACT 

Point set topology are terse introduction to the topological concepts used in economic  

theory. Topology is a basic mathematical field that deals with geometric properties,  

continuity, and boundary in relation to subspaces. Tynchonoff’s theorem is classified as of  

the topology theorem.  
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INTRODUCTION 

  Elements of point set topology is the branch of toplogy that deals with the basic set- 

theoritic definitions and constrctions used in topology. Another name of point set  

topology is algebraic topology, general topology, set theoritic topology. 

BASIC DEFINITION: 

 DEFINITION 

A topology on a group X may be a collection τ of subsets of X having the 

subsequent properties 

(i) ∅ and x are in τ 

(ii) The union of the weather of any subcollection of τ is in τ 

(iii) The intersection of the weather of any finite subcollection of τ is in τ 

EXAMPLES 

       𝑋 =  1,2,3,4 , 

       𝜏 = {{ }, {2}, {1,2}, {1,2,3}, {1,2,3,4}}    

             𝜏 is a topology on X 

REMARKS 

A topology 𝜏 is an open sets 
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DEFINITION 

  If X is any set, the collection of all subset of X is a topology on x it is called the 

discrete 

topology 

 

DEFINITION 

If X is any set, the collection of X consisting of  X and ∅ only is a topology on X it is  

called the indiscrete topology (or)trivial topology 

DEFINITION 

Let X be a set, 𝜏𝑓  be the collection of all subsets U of X. such that X-U either is finite 

or is  

all of X.Then 𝜏𝑓  is topology on X, called the finite complement topology.  

DEFINITION 

Let X be any infinite set. Define a topology on X by A=𝜏 is X-A os finite or  

A=∅. This is called the Zariski topology(0r) co-finite topology. 

CLOSED SET, ADHERENT POINT AND ACCUMULATE POINTS 

DEFINITION 

Let S be a subset of 𝑅𝑛  and Let X be a point in 𝑅𝑛 ,X not necessarily in S. Then X is 

said  

to be adherent to S if everyn-ball B(X)  

EXAMPLE 

If S is a subset of R which bounded above, then supremum is adherent to S. 

DEFINITION 

If S⊆ 𝑅𝑛  and x𝜖𝑅𝑛 , then s is called an accumulation point of S if every n-ball B(x)  

contains atleast one point of S distinct from X 

EXAMPLE 

The set of rational numbers has every number is an Accumulation point 

DEFINITION 

A set S in 𝑅𝑛  is named closed if its complement 𝑅𝑛 -S is open. 

THEOREM 
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In any mathematical space X, each closed sphere may be a closed set. 

PROOF 

Let X be a metric space. 

Assume that, 

     𝑆𝑟 [𝑥0]′  is non-empty      

     Let 𝑆𝑟 [𝑥0] be a closed sphere in X. 

     If 𝑆𝑟 [𝑥0]′  is open and it is empty. 

     Let x be a point in 𝑆𝑟 [𝑥0]′   

     Since, d(x,𝑥0) > 𝑟, 𝑟1=d(x,𝑥0)-r is a positive real number, 𝑟1 as the radius of an open 

sphere 𝑆𝑟1(𝑥) centered on x. 

We show that, 

     𝑆𝑟 [𝑥0]′  is open 

     𝑆𝑟1(𝑥) ⊆ 𝑆𝑟 [𝑥0]′  

     Let y be a point in 𝑆𝑟1 𝑥  

                 d(y,x)< 𝑟1 

             𝑑(𝑥,𝑥0) ≤ 𝑑(𝑥0,𝑦) + 𝑑(𝑦, 𝑥) 

             𝑑 𝑦, 𝑥0 ≥ 𝑑 𝑥, 𝑥0 − 𝑑(𝑦, 𝑥) 

                            > 𝑑 𝑥, 𝑥0 − 𝑟1 

                           = 𝑑 𝑥, 𝑥0 − [𝑑 𝑥, 𝑥0 − 𝑟] 

            𝑑 𝑦, 𝑥0 = 𝑟 

     Since, y is in 𝑆𝑟 [𝑥0]′  

             𝑆𝑟(𝑥0) be a closed. 

                    Hence, proved.  

THEOREM 

The intersection of a finite collection of open sets is open.  

PROOF 

Let S denote their intersection 
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              S =  𝐴𝑘
𝑀
𝐾=1  

     Then each  𝐴𝑘   is open 

Assume that, 

     x ∈ S 

If  x  is empty. 

There is nothing to prove, 

      x ∈ 𝐴𝑘 , for every K = 1,2,…,n 

Hence, there is an open n - ball  B(x;𝑟𝑘) ⊆ 𝐴𝑘 

Let r be the smallest positive numbers 𝑟1, 𝑟2, … 𝑟𝑚  

Then, x∈B(x;r) 

 Since, B(x;r) ⊆ S 

      X is an interior point. S is open 

Hence, their intersection of a finite collection of open sets is also open 

             Hence, proved. 

DEFINITION 

Let X be a non-empty set. A function d:𝑋 × 𝑋 → ℝ is said to be metric space  

on X if it satisfies the following conditions 

I. d(x,y)≥0 with d(x,y)=0, ∀𝑥, 𝑦𝜖𝑋 

II. d(x,y)=d(y,x), ∀𝑥, 𝑦𝜖𝑋 

III. d(x,y)≤d(x,z)+d(z,y), ∀𝑥, 𝑦, 𝑧𝜖𝑋 

Note: 

Let (X,d) is a metric space on X,  X is a non-empty set. 

CONCLUSION: 

The notions of groups and functions in topological spaces, ideal mathematical 

spaces, minimal spaces and ideal minimal spaces are extensively developed and utilized 

in many engineering problems, information systems, high-energy physics , 

computational topology and mathematical physics. 
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