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ABSTRACT 

 
This paper has two chapters, in chapter one, basic concepts about fuzzy matrices are 

introduced. Basic notations of matrices are given in section one in order to make the book 

self-contained. Section two gives the properties of fuzzy matrices. Since the data need to 

be transformed into fuzzy models, some elementary properties of graphs are given. 

Further, this section provides details of how to prepare in linguistic question to make use 

of in these fuzzy models when the data related with the problem is unsupervised. 

 

INTRODUCTION 

 
This paper aims to assist social scientists to analyze their problems using fuzzy 

models. The basic and essential fuzzy matrix theory is given. The paper does not promise 

to give the complete properties of basic fuzzy theory or basic fuzzy matrices. Instead, the 

authors have only tried to give those essential basically needed to develop, the fuzzy 

model. The authors do not present elaborate mathematical theories to work with fuzzy 

matrices. Instead they have given only the needed properties by way of examples. The 

authors feel that the paper should mainly help social scientists, who are interested in 

finding out ways to emancipate the society. Everything is kept at simplest level and even 

difficult definitions, have been omitted. Another main feature of this paper is the 

description of each fuzzy model using examples from real-word problems. Further. This 

paper gives lots of reference so that the interested reader can make use of them. 

This paper has two chapters, in chapter one, basic concepts about fuzzy matrices are 

introduced. Basic notations of matrices are given in section one in order to make the book 
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self-contained. Section two gives the properties of fuzzy matrices. Since the data need to 

be transformed into fuzzy models, some elementary properties of graphs are given. 

Further, this section provides details of how to prepare in linguistic question to make use 

of in these fuzzy models when the data related with the problem is unsupervised. 




0 if  x  


y 


x if  x  


y 

 

 

DEFINITION 

 
Some operations and notation are defined, For x, y in the 

interval [0, 1], x+y, xy,x – y, x*y are defined as follows. 

x +y = max(x, y) 
 

xy = min(x, y) 

 

x  y  
x if  x  y

 

x * y  
1  if  x  y 

 



Next, we define some matrix operations on fuzzy matrices 

whose elements exists in the interval [0, 1]. 

Let 
 

A  [aij ] (m  n) 

B  [bij ] m  n . 
 

 

F [ fij ], (n  l) , and R  (rij ), (n  n) 

 

Then the following operations are defined. 
 

 n 
AF  aik  fkj 


 k 1 

 





 
n
 

A * F  (aik  * fkj ) 

 k 1 



A '  [aij ] (The transpose of A) 

 

A  B If and only if a  b for every i, j. R  R  R
'
. 

ij ij 

 

TRANSITIVE: 
 

A matrix R is said to be transitive if R
2
  R 

 

REFLEXIVE: 

 
A matrix R all of whose diagonal elements are one is called 

reflexive. 

IRREFLEXIVE: 

 
Conversely a matrix R all of whose diagonal elements are 

zero is called irreflexive. 

 

NILPOTENT: 

 

A matrix R is nilpotent if 

deal only with fuzzy matrices. 

LEMMA: 

 

Rn  0 

 

 

(0 is the zero matrixes) we 

 

If A  [aij ] is a mn fuzzy matrix then A* A
'
 is reflexive 

 

and transitive. 



ij 

n 

n 

 

PROOF: 
 

 

Let 
S  [S ] A * A'. 

n 

(ie) S
ij   (aik  *a jk )  1 

k 1 

 

Clearly, 
 

 

S
ii 

 

 

  (aik  *a jk )  1. 
k 1 

 

Thus, S is reflexive. 

 
Suppose that 

 

Sil Slj  c  0 For some l, then 
 
 

Sil     (aik  * alk )  c 
k 1 

Sij    (aik  * a jk )  c. 
k 1 

 

If Sij  c then a
ih 
 a 

jh and aih  c for some h. 

 

Therefore 
 

And Slj  c we have c  aih  alh  ajh, 

 

Which is the contradiction 
 

Hence Sij  c so that S is transitive. 

 

Let Ai be the ith row of A if Ai  Aj then Sij  1 where Sij is 
 

the (i, j) entry of S  A* A' . 

n 

Sil  c 



ij ij ij ji ii ii ii 

 

Hence the matrix S represents inclusion among the rows of A. 

In other word S gives the hierarchy is reflexive and transitive. 

This becomes clear if A is Boolean. 

 
Interesting properties 

 

If a nn fuzzy matrix R is reflexive and transitive then as 

is well-known R is idempotent that is 
 

R2  R . 
 

LEMMA: 
 

Let S  [Sij ] and Q  [qij ] be mm transitive matrices. If 
 

S  Q then S  Q
'
 is reflexive and transitive. 

 

PROOF: 
 

Let H  [h  ]  S  Q
'
 that is  h    S  q then h  S  q  0 . 

 

So that H is irreflexive next suppose that 

there are two cases. 

Case (i) 

hik hkj  c  0 then 

 

Sik  C , S
ik 
 Q

ki , Skj  C 

 

Case (ii) 
 

Sik  C, Skj  C , S
kj 
 q 

jk Clearly Sij  C suppose that 
 

qij  c in the first cases q jk  q jiqik  c . 

 
This is contradiction. 



 

Hence qji  c so that hij  c 

 

That is H is transitive. 

 
Hence the proof 

 

ON FUZZY M-NORMED MATRICES 

 
PRELLIMINARIES: 

 
We shall consider F fuzzy algebra [0, 1] with operations 

(+,*) and standard order  where a+b=max {a, b}, a.b=min {a, b} 

for all a, b in F. F is a commutative semi ring with additive and 

multiplicative identities 0 and 1, respectively. 

 

Let M mm (F ) denotes the set of all mn fuzzy matrices over 
 

F. In short Mn (F ) is the set of all fuzzy matrices of order n. 

 

Define ‘+’ and scalar multiplication in Mn (F ) as 
 

A  B  [aij  bij ] where A  [aij ] , B  [bij ] and CA  [Cai j ] where 
 

C [0,1] 

1] 

with these operations Mn (F ) forms a vector space over [0, 

 

In all vector space more properties can be analyzed if the 

vector spaces and supplied with matrices. The matrices are defined 

in vector spaces through the introduction of suitable non-negative 

quantity called norm. In Mn (F ) also the same technique is adopted 
 

by introducing the concept norm in the following way. 



A  m  0 and A m  0 iff if 

CA m = C A m 

B m 

n n 

 

FUZZY M-NORMED AND SEMIMETRIC 

DEFINITION

Let 

=[0,1]. 

Mn (F ) be the set of all (n  n) fuzzy matrices overF 

 

For every A in Mn (F ) define m-norm of A denoted by 
 

as A m  max[ai j ] where A  [aij ] 

 

(or)  max[a11, a12 ,............aij , .........amn ] 

 

(Or) 
 
 

 aij . . 
i1 j 1 

 

THEOREM:  
 

If Mn (F ) is the set of all (n  n) fuzzy matrices over F=[0,1] 
 

then for all fuzzy matrices A and B in 

[0,1] We have, 

Mn (F ) and any scalar C in 

i) A  0 

ii) for any C in [0, 1]. 
 

iii)i

v) 

A  B m = 

= 

A m + for A, B in Mn (F ) . 

for A, B in Mn (F ) . 

 

PROOF: 
 

Let A=[aij ]  and B=[bij ]  be two fuzzy matrices. 

A m 

AB m A m B m 



n 

 

(i) since all aij  [0,1]  max[aij ] = A m  0 for all A Mn (F ) 
 

 aij    0  For all i and j 

 

 A=0 

 
Contradiction if A=0 then max[aij ]  0 

 





 A m  0 Iff if A=0 

 

(ii) If C [0,1]  Then CA=[Caij ] 

 

   
CA m  max[Caij ]  C max[aij ] 

 C 

 

(iii) (iii) A m =max [aij ] and =max [aij ] 

 

Now A  B m =max[Cij ] where [Cij ] =[aij ] 

 

=max {[aij ]  [bij ]} 

 
=max[aij ] +max[bij ] 

 

= A m + B m . 

 

(iv) (iv) A  m =max[aij ] = aij and B m =max [ bij ]= bij 

 

If AB=D then the entries of D are given by, 
 

 
d

ij 

 

 

 a
ik 

b
kj 

k 1 

 
 

= {min(aik , bkj )} 
k 1 

n 

A m  0 

A m 

B m 



 

=min ( (ai1 , b1 j ) +min (ai 2 , b2 j ) +………+min (ain , bnj )  ........... (1) 

 

Case (i) 
 

If all aij  [bij ] for j=1, 2…. n 

 

Then we have di j = ai1  ai 2 	 ain (from (1)) 

 

= a
ij 

 

 max[dij ]  max[aij ] 

 

(i.e.) AB m = A m = 

 

Case (ii): 
 

If all bij  aij , for j=1, 2…. n 

 

Then we have dij   bi1   bi 2 	 bin ( from (1) ) 

 

= b
ij 

 

 max[dij ]  max[bij ] 

 

(i.e.) AB m = B m = 

 

Case (iii) 
 

Let some aij  [bij ] and some other b
ij 
 a

ij without loss of 
 

generality. Let we assume that 

all n  m 

aim  bim for all n<m and bim  aim for 

 From (1) d
ij 
 aij   .........aim   bi (m1)  	 bin 

A m B m 

A m B m 



 

 

 

m n 

dij   aij  
j 1 

 bij  aij  bij 

j m1 

 

dij  aij , 

 bij  , 

if  aij   bij 

if aij  bij 

 

 Max [[dij ] =max[aij ] = 

 

(Or) 

 
Max[bij ] = 

 

AB  m  =  A m B m . 

 

EXAMPLE: 
 

 .7 .2 0  .2 1 0
   

If A=  .8 .3 .4  & B=  .5 .4 .6 .5 .6 .9 



.7 .5 .6 



   



Then 
 

.7 .2 0 

A+B= .8 .4 .6 



.7 .6 .9 



A  B m  0.9 , A m  B m  0.9  0.7  0.9 
 
 

 
 

Set C=0.2 
 

Then 

A  B m  A m  B m 

A m 

B m 

A m  0.9, B m  0.7 



B m 

   

     

 

 

 

 

 

.7 .2 0  .2 .2 0 
CA=0.2 .8 .3 .4 

 = .2 .2 .2 



 
.5 .6 .9 

 
.2 .2 .2 



C A m  (.2)(.9)  .2 

 




.7 .2 0  .2 .1 0  .2 .2 .2 
AB= .8 .3 .4 

 
.5 .4 .6 

 = .4 .4 .4 



   
.5 .6 .9  .7 .5 .6 

 
.7 .5 .6 



AB m  0.7, A m B m  (0.9)(0.7)  0.7 

 





DEFINITION:  
 

A fuzzy matrix A is defined to be greater than B if 


A m . A is strictly greater then B if B m < we also say that B 
 

is smaller than (strictly smaller) A. 

 

EXAMPLE: 
 

.2 .3 .5 

Let A= .1 .5 .4 



 0 .6 .7 

.1 .5 .4 

and B= .3 .2 .1



 0 .5 .4 



Then A m =0.7, B m =0.5 

 

 B m < 

 

 A is strictly greater then B. 

CA m  .2, 

CA  m  C A m 

AB m  A m B m . 

A m 

A m 



A  B m 

 

DEFINITION: 

 
Define a mapping d: Mn (F) Mn (F) [0,1] as d(A,B)= 

for all A,B Mn (F). 

THEOREM:  

 
The above mapping d satisfies the following conditions for all 

A, B, C in Mn (F). 

 

i) d(A,B)  0, if d(A,B)=0 then A=B 

ii) d(A,B)=d(B,A) 

iii) d(A,B)  d(A,C)+d(B,C) for all A,B,C 
 

Mn (F) thus, d is a pseudo-metric in Mn (F). 

 

PROOF: 
 

i) d(A,B)= A  B m  0  A,B in Mn (F) 

 

d(A,B)  0 

Suppose d (A, B) =0 then 





 A=0 and B=0 

 
 A=B 

 

But A=B  A m = 

 

(i.e.) A m  B m = B m + B m = 

A  B m  0 

A m  B m  0 

B m 

B m 



C  m  B m 

B 

 





   d (A,B)  0 

 
A=B need not imply d (A, B) =0 

 

(i) d (A,B)= A  B m  B  A m  d(B,A) 
 

   d (A,B)=d(B,A) 
 

(ii) Let A,B,C in Mn (F) be such that 


d (A,B)= A  B m  A m + B m = 

 

d(A,C)= A  C m = A m + C m = 

 

d(B,C)= B  C m = B m + C m = 

 

d(A,B)=  C m =d(A,C)+d(B,C) 

 

d(A,B)  d(A,C)+d(B,C) 

 
Similarly,for the other cases also we have 

d (A,B)  d(A,C)+d(B,C) 

Thus, in all cases, 
 

d (A,B)  d(B,C)+d(C,A) for all A,B,C in Mn (F) 

 

Thus from (i) (ii) and (iii) we see that d is a pseudo-metric on 

Mn (F) 

 
The above pseudo=metric can be extended to a finite product of 

Mn (F). 

A  B m  B m 

A m 

B m 

C m 

C m 



 

NOTATION 

 
Let X= Mn (F)  Mn (F)  …….n times. 

 
THEOREM 

 

 

The mapping d: X X[0, 1] defined as 

 

  
 

d ( A, B) =  di  (Ai , Bi ) 
I 1 

 

, where A = A1, A2 ,..........An      and B = ( B1, B2 , ....... Bn ) are in V and di 

 

are pseudo-metric on Mn (F) is a pseudo-metric for X. 

 

PROOF: 
 

(i) Since di ’s are pseudo-matrices 
 

di ( Ai , Bi )  0 , i=1, 2,…..n 

 

 di (Ai , Bi )  0 

 

(i.e.) d ( A, B)  0  A , B X 
 

 

(ii) If 

 

d ( A, B) =0 then 

 
 Max 

 

 

 di ( Ai , Bi )  0 
i1 

 

di (Ai , Bi ) = 0 

 

 di (Ai , Bi ) = 0, for i=1, 2,….n 
 

( (Ai , Bi )  0,1  i) 

 





 Ai        m + Bi m = 0 

 

Ai = 0 and Bi = 0 for i=1,2,…n 

n 

n 

Ai  Bi m  0 



Bi m 

 

 ( A1, A2 ,......An )  (B1, B2 , ..... Bn ) 

 

(i.e.)  A  = B 

 

Thus d ( A, B) =0   A = B 

 

Conversely if A = B then Ai = Bi , for i=1,2 ,…n 

 

Ai  Bi  Ai m = for i=1, 2,…..n 

 

(i.e.) Ai m + Bi  m = Bi  m + for i=1,2,…..n 

 

(i.e.) Ai  Bi m = for i=1, 2,… .. n 

 

(i.e.) di ( Ai , Bi )  =  0 
 
 

 

  di  ( Ai , Bi ) 
I 1 

 

Need not be equal to zero 

 

(i.e.) 
 

  

d ( A, B) need not be zero 

 

 A = B  d ( A, B) =0. 

 
n    n    

(iii) d ( A, B) =  di ( Ai , Bi )  =  di(Bi , Ai ) = d (B, A) 
i1 I 1 

(iv) For each di , i=1,2,…..n 

di ( Ai , Bi )  di ( Ai , Bi )  di (Ci , Bi ) 

 
n n n 

 di  ( Ai , Bi )   di  ( Ai , Ci )   di  (Ci , Bi ) 
i1 i1 i1 

 

(i.e.) d ( A, B) < d ( A, C)  d (C, B) 

 

Thus  from (i),(ii), (iii) and (iv) we see that d is pseudo- 

metric. 

n 

Bi m 

Bi m 

Bi m 



 

 

CONCLUSION 

  

In this see we give some basic matrix theory essential to 

make the book a self-contained one. However, the book of Paul. 

Horst on matrix algebra for social scientists would be a boon to 

social scientists who wish to make use of matrix theory in their 

analysis. 

We give some very basic matrix algebra. This is need for  

the development of fuzzy matrix theory and the psychological 

problems. 

However, these fuzzy models have been used by applied 

mathematicians, to study social and psychological problems.  

These models are very much used by doctors, engineers, scientists, 

industrialists and statisticians. Here we proceed on to give some 

basic properties of matrix theory. 
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