A STUDY ON FINITE FREE SOLUTIONS Dr.M.KOTHANDARAMAN¹ ,P.PRIYA² ,Dr.S.SANGEETHA³ ,Dr.N.JANEESWARI⁴ Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous)

Perambalur

ABSTRACT

This article deals with the study of Algebra structures which will tend to finite free resolution of cyclic modules over an area noetherian ring. In recent years, a number of people exploited the unique algebric structure that can be put on a minimal finite free resolution of residue class field of local ring R.

INTRODUCTION

Algebra (from Arabic : al –jabr meaning " reunion of broken parts and bonesetting) is one among the broad parts of mathematics ,together with number theory,geometryandanalysis.initsmostgeneralform,algebraisthestudyof mathematical symbols and the rules for manipulating these symbols ,it is a unifying thread of almost all ofmathematics.

Homologicalalgebraisthebranchofmathematicsthatstudieshomology in a general algebraic setting. Homological algebra began to be studied in its most elementary form within the 1800s as a branch of topology , but it wasn′t until the 1940s that it became an independent subject with the study of objects like the ext functor and therefore the tor functor , among others. It is a comparatively young discipline, whose origins are often traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of

modulesandsyzygies)attheendofthe19thcentury,chieflybyHenripoincare and Davidhilbert. Homological algebra affords the means to extract information contained within the se

complexes and present it in the sort of homological invariants of rings,modules ,topologicalspaces ,andother"tangible̓mathematicalobjects . A powerful tool for doing this provided by spectral sequence

DEFINITION

Let A be a ring.A module E is called **stably free** if there exists a finite free module F such that E⊕F is finite free, and thus isomorphic to $A^{(n)}$ for some positive integer n. In particular, E is projective and finitely generated.

We say that a module M has a **finite free resolution** if there exist a resolution ,

 $0 \longrightarrow E_n \longrightarrow \cdots \longrightarrow E_0 \longrightarrow M \longrightarrow 0.$

Such that each E_i is finite free.

THEOREM

Let M be a projective module. Then M is stably free if and only if M admits a finite free resolution .

PROOF:

If M is stably free then it is trivial that M has a finite free resolution . conversely assume the existence of the resolution with the above notation. We prove that M is stably free by induction on n.

The assertion is obvious if n =0. Assume $n \ge 1$. Insert the kernals and cokernals at each step,in the manner of dimension shifting ,say

$$
M_1 = Ker(\ E_0 \to P)
$$

Giving rise to the exact sequence

$$
0 \longrightarrow M_1 \longrightarrow E_0 \longrightarrow M \longrightarrow 0.
$$

Since, M is projective this sequence splits, and $E_0 \approx M \oplus M_1$. But M_1 has a finite free resolution of length smaller than the resolution of M, so there exists a finite free module F such that $M_1 \oplus F$ is free. Since $E_0 \oplus F$ is also free.

A resolution ,

$$
0 \longrightarrow E_n \longrightarrow E_0 \longrightarrow M \longrightarrow 0
$$

is called stably free if all the modules E_i ($i=0,...,n$) are stably free.

PROPOSITION

Let M be an A- module. Then M has a finite free resolution of length $n \ge 1$ if and only if M has a stably free resolution of length n.

PROOF:

One direction istrivial, so we suppose given a stably free resolution with the above notation.

Let $0 \le i < n$ be some integer, and let F_i , F_{i+1} be finite free such that $E_i \oplus F_i$ and $E_{i+1} \oplus F_{i+1}$ are free.

Let $F = F_i \bigoplus F_{i+1}$. Then we can form an exact sequence,

 $0 \xrightarrow{} E_i \xrightarrow{} \cdots \cdots \cdots \xrightarrow{} E_{i+1} \bigoplus F \xrightarrow{} E_i \bigoplus F \xrightarrow{} \cdots \cdots \cdots \xrightarrow{} E_0 \xrightarrow{} M \xrightarrow{} 0$

In the obvious manner. In this way, we have changed two consecutive modules in the resolution to make them free. Proceeding by induction, we can then make E_0 , E_1 free, then E_1 , E_2 free and so on.

THEOREM

Let M be a module which admits a free resolution of length n.

 $0 \longrightarrow E_n \longrightarrow$ $\longrightarrow E_0 \longrightarrow M \longrightarrow 0$

PROOF

Let Fm⟶...................⟶ F⁰ ⟶ M ⟶ 0

be an exact sequence with F_i stably free for $i = 0, \ldots, m$.

(i) If m \lt n-1 then there exists a stably free F_{m+1} such that exact sequence can be continued exactly to

 $Fm+1 \longrightarrow$ $\longrightarrow F0 \longrightarrow M \longrightarrow 0$

(ii) If m = n-1 , let $F_n = \ker$ ($F_{n-1} \to F_{n-2}$). Then F_n is stably free and thus $0 \to F_n \to$

Fn-1 ⟶ ..⟶ F⁰ ⟶ M ⟶ 0

is a stably free resolution.

DEFINITION

The minimal length of a stably free resolution of a module is called its **stably free dimension**.

COROLLARY

If $0 \to M_1 \to E \to M \to 0$ is exact, M has stably free dimension $\leq n$, and E is stably free ,then M_1 has stably free dimension \leq n-1.

DEFINITION

Let A be a ring and M a module . A sequence of elements x_1, \ldots, x_r

in a A is called M-regular if M / (x_1, \ldots, x_r) M $\neq 0$, if x_1 is not divisor of zero in M, and for i ≥ 2 , x_1 is not divisor of 0 in

$$
M \mathbin{/} (\begin{smallmatrix} x_1, \ldots, x_{i\text{-}1} \end{smallmatrix}) M
$$

It is called **regular** when $M = A$.

DEFINITION

Let A be a commutative ring and $x \in A$. we define the complex K(x) to have $K_0(x) =$ A, $K_1(x) = Ae_1$, where e_1 is a symbol, Ae_1 is the free module of rank 1 with basis $\{e_1\}$, and the boundary map is defined by $de_1 = x$, so the complex can be represented by the sequence

$$
0 \rightarrow \begin{array}{ccc} & d \\ & \text{Ae}_1 \rightarrow \text{A} \rightarrow 0 \\ & & || & || \\ 0 \rightarrow \text{K}_1(x) \rightarrow \text{K}_0(x) \rightarrow 0 \end{array}
$$

More generally, for elements $x_1, \ldots, x_r \in A$ we define the **Koszul complex** $K(x) = K$ (x_1, \ldots, x_r) as follows .we put;

$$
K_0(x) = A;
$$

\n
$$
K_1(x) = \text{free module } E \text{ with basis } \{ e_1, \dots, e_r \};
$$

\n
$$
K_p(x) = \text{free module } \bigwedge^p E \text{ with basis } \{ e_i \wedge \dots \wedge e_i \}, i_1 < \dots < i_p ;
$$

\n
$$
K_r(x) = \text{free module } \bigwedge^r E \text{ of rank 1 with basis } e_1 \wedge \dots \wedge e_r.
$$

And we define the boundary maps by $de_i = x_i$ and general d : $K_p(x)$

$$
\rightarrow K_{p-1}(x) \text{ by,}
$$
\n
$$
d(e \t i1^{\Lambda} ... \t p) = \sum_{j=1}^{p} (-1)^{j-1} x e \Lambda ... \Lambda e \Lambda ... \Lambda e
$$
\n
$$
i \t j \t i \t i \t j \t i
$$

DEFINITION

Given a ring R and modules A_R and $_R B$, then their **tensor product** is an abelian group $A \otimes_R B$ and an R- biadditive function

$$
h: A \times B \longrightarrow A \otimes_R B
$$
 such that,

for every abelian group G and every R-biadd $f : A \times B \longrightarrow G$, there

exists a unique \mathbb{Z} - homomorphism \tilde{f} : A $\otimes_{\mathbb{R}}$ B \rightarrow G making the following diagram commute:

THEOREM

Let D = det (c_{ii}) be the determinant. then for $p = r$ we get that $f_r : K_r(y)$ \rightarrow K_r (x) is multiplication by D,

the homomorphisms f_p define a morphism of Koszul complexes :

and define an isomorphism if D is a unit in A, for instance if (y) is a permutation of (x) .

PROOF

A complex

$$
0 \longrightarrow K_r(x) \longrightarrow \cdots \longrightarrow K_p(x) \longrightarrow \cdots \longrightarrow K_1(x) \longrightarrow A \longrightarrow 0
$$
 is

independent of the ideal $I = (x_1, \ldots, x_r)$ generated by (x). Let

 $I = (x_1, \ldots, x_r)$ ⊃ $I' = (y_1, \ldots, y_r)$

be two ideals of A . We have a natural ring homomorphism can : A∕ I′

 \rightarrow A/ I. Let { $e',...,e'$ } be a basis for $K_1(y)$, and let $1 \qquad r$

$$
y_i = \sum c_{ij} x_{ij}
$$
 with $c_{ij} \in A$.

we define $f_1 : K_1(y) \longrightarrow K_1(x)$ by

$$
f_1e'=\sum c_{ij} e_j
$$

and $f_p = f_1 \wedge \cdots \wedge f_1$, product taken p times. By

definition,

$$
f(e' \wedge \dots \wedge e') = (\sum_{ip}^{r} j = 1^{c_i} j e_j) \wedge \dots \wedge (\sum_{p}^{r} j = 1^{c_i} j e_j)
$$

1

=1 =1 =1 then f d (′ ∧ ⋅⋅⋅⋅ ∧ ′) = f (∑(−1) k-1 ′ ∧ ⋅⋅⋅⋅ ∧ ̂ ′ ∧ ⋅⋅⋅⋅ ∧ ′) 1 1 ⁼ ∑(−1) k-1 ([∑] j e^j) ∧ ⋅⋅⋅ ∧ ∑̂∧⋅⋅⋅⋅∧(∑ j e^j) =1 1 =1 = ∑ (−1)k-1 (∑ 1 j e^j) ∧⋅⋅⋅⋅∧ (∑ j x^j e^j) ∧⋅⋅⋅⋅⋅ ∧(∑ j e^j) }

omitted

$$
= d f (e' \wedge \cdots \wedge e') \n i1 \qquad i p
$$

Using $y_{i_k} = \sum c_{i_k} j_x$. This concludes the proof that the f_p define a homomorphism of complexes.

In particular, if (x) and (y) generate the same ideal, and the determinant D is a unit (y) i.e. the linear transformation going from (x) to (y) is invertible over the ring) , then the two Koszul complexes are isomorphic.

THEOREM

There is a natural isomorphism

K (x_1, \ldots, x_r) ≈ K (x_1) ⊗ \cdots ⊗ K(x_r).

PROOF:

Let $I = (x_1, \ldots, x_r)$ be the ideal generated by x_1, \ldots, x_r . then

directly from the definitions of the 0-th homology of the Koszul complex is A ∕ IA .

More generally , let M be an A-module.Define the Koszul complex of M

by ,

 $K(x ; M) = K(x_1, \ldots, x_r ; M) = K(x_1, \ldots, x_r) \otimes_A M$

Then this complex looks like

 $0 \longrightarrow K_r(x) \otimes M \longrightarrow \cdots \longrightarrow K_2(x) \otimes_A M \longrightarrow M \longrightarrow 0$.

We sometimes abbreviate $H_p(x; M)$ for $H_pK(x; M)$. The first and last homology groups are then obtained directly from the definition of boundary. We get,

 $H_0 (K(x ; M)) \approx M / IM$

 $H_r(K(x); M) = \{ \nu \in M \text{ such that } x_i \nu = 0 \text{ for all } i = 1,...r \}$. A tensor product of any complex with $K(x)$, when x consists of a single element. Let y ∈ M and let C be an arbitrary complex of A-modules. We have an exact sequence of complexes

 $0 \to C \to C \otimes K(y) \to (C \otimes K(y)) / C \to 0$ (1)

We note that $C \otimes K_1(y)$ is just C with a dimension shift by one unit, in other words,

$$
(\mathbf{C} \otimes \mathbf{K}_1(\mathbf{y}))_{n+1} = \mathbf{C}_n \otimes \mathbf{K}_1(\mathbf{y}) \qquad \qquad \longrightarrow \qquad \qquad \blacktriangleright (2)
$$

In particular,

$$
H_{n+1}(C \otimes K(y) / C) \approx H_n(C) \qquad \qquad \underline{\hspace{2cm}} \qquad \qquad \underline{\hspace{2cm}} \tag{3}
$$

Associated with an exact sequence of complexes, we have the homology sequence , which in this case yields the long exact sequence ,

$$
\begin{array}{cccc}\n\mathbf{H}_{n+1}(C) & \mathbf{H}_{n+1}(C \otimes K_1(y)) & \mathbf{H}_{n+1}(C \otimes K(y) / C) & \mathbf{H}_n(C) \\
\mathbf{H}_{n+1}(C) & & \mathbf{H}_n(C)\n\end{array}
$$

Which we write stacked up according to the index :

$$
\rightarrow H_{p+1}(C) \rightarrow H_{p+1}(C) \rightarrow H_{p+1}(C \otimes K(y)) \rightarrow
$$

$$
\rightarrow H_p(C) \rightarrow H_p(C) \rightarrow H_p(C \otimes K(y)) \rightarrow
$$
 (4)

Ending in lowest dimension with

$$
\longrightarrow H_1(C) \longrightarrow H_1(C \otimes K(y)) \longrightarrow H_0(C) \longrightarrow H_0(C) \qquad \qquad \longrightarrow \textbf{(5)}
$$

Furthermore , a direct application of the definition of the boundary map and the tensor product of complexes yields :

The boundary map on $H_p(C)$ ($p \ge 0$) is induced by multiplication by (

 $-1)$ ^p y :

$$
\partial = (-1)^p \, m(y) : H_p(C) \longrightarrow H_p(C) \tag{6}
$$

sssIndeed , write

$$
(C \otimes K(y))_p = (C_p \otimes A) \oplus (C_{p\text{-}1} \otimes K_1(y)) \approx C_p \oplus C_{p\text{-}1}.
$$

Let $(v,w) \in C_p \oplus C_{p-1}$ with $v \in C_p$ and $w \in C_{p-1}$. then directly from the definitions,

$$
d(\nu, w) = (d\nu + (-1)^{p-1} yw, dw)
$$
 (7)

To see (6), one merely follows up the definitions of the boundary, taking an element $w \in C_p$ \approx (C_p ⊗ K₁(y)), lifting back to (0,w), applying d, and lifting back to C_p.

If we start with a cycle, i.e. $dw = 0$,

then the map is well defined on the homology class , with values in the homology.

DEFINITION

EXT FUNCTOR:

Let R be a ring and let $a = Mod(R)$ be the category of R-modules. Fix a module A. The functor $M \mapsto$ Hom (A, M) is left exact, i.e. given an exact sequence $0 \to M' \to M \to$ M**″** , the sequence

 $0 \rightarrow Hom(A, M') \rightarrow Hom(A, M) \rightarrow Hom(A, M'')$

is exact. Its right derived functors are denoted by $Ext^{\mathbf{n}}(A, M)$ for M variable.

DEFINITION

TOR FUNCTOR :

Let R be commutative. The functor $M \mapsto A \otimes M$ is right exact, in other words, the sequence

 $A \otimes M' \rightarrow A \otimes M \rightarrow A \otimes M'' \rightarrow 0$

is exact. Its left derived functors are denoted by $Tor_n(A, M)$ for M variable.

THEOREM

Let x_1, \ldots, x_r be an M-regular sequence in A . let I = (x). then Ext¹ (A /

I, M $) = 0$ for $i < r$.

PROOF:

we assume that the exact homology sequence. Assume by induction that $Ext^{\mathbf{i}}(A/I, M)$ $= 0$ for $i < r-1$. then we have the exact sequence,

$$
0 = \operatorname{Ext}^{i-1}(A/I, M/x_1M) \longrightarrow \operatorname{Ext}^{i}(A/I, M) \longrightarrow \operatorname{Ext}^{i}(A/I, M)
$$

for $i < r$. But $x_1 \in I$ so multiplication by x_1 induces 0 on the homology groups, which gives Ext¹(A/I, M) = 0 as desired.

Let $L_n \longrightarrow N \longrightarrow 0$ be a free resolution of a module N.by definition,

 $Tor^{A}(\nabla_{i} M) = i-th homology of the complex L@M. This is$

independent of the choice of L_N up to a unique isomorphism.

COROLLARY

If x is a regular sequence in R , then K(x) is a free resolution of R/I, $Z = (x_1, \ldots, x_n)$

R. that is , the following sequence is exact :

x $0 \to \Lambda^n(\mathbb{R}^n) \to \cdots \to \Lambda^2(\mathbb{R}^n) \to \mathbb{R}^n \to$ $R \rightarrow R/I \rightarrow 0$

In this case we have,

$$
Tor^{R} (R / I, A) = H_{p}(x, A):
$$

$$
Ext^{p} (R / I, A) = H_{p}(x, A).
$$

CONCLUSION

In this project concluded that the briefly explained about HOMOLOGICAL ALGEBRA , and also its utilized in the concepts are particularly in algebraic topology , algebraic geometry , irrational number theory , commutative algebra , operator algebras and etc…..

BIBLIOGRAPHY

- 1. **Serge Lang ,** " Algebra " revised third edition , springer , 2002.
- 2. **J.Rotman**, "Introduction to homological algebra", Academic press, 1979.
- 3. **D.Northcott**, "Finite free resolutions", Cambridge University Press, 1976.
- 4. **H.Cartan and S.Eilenberg** , " Homological algebra ", Princeton university press , 1957.
- 5. **Charles A. weibel** , " An introduction to homological algebra", Cambridge university press, 1994.
- 6. **Anthony W. Knapp** , "Advanced algebra ",digital second edition, 2016.
- 7. **S.Arumugam and A.Thangapandi Isaac** , "Modern algebra ", Edition 2000.