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ABSTRACT 

 

This article deals with the study of Algebra structures which will tend to finite free 

resolution of cyclic modules over an area noetherian ring. In recent years, a number of 

people exploited the unique algebric structure that can be put on a minimal finite free 

resolution of residue class field of local ring R. 

 

INTRODUCTION 

 

Algebra ( from Arabic : al –jabr meaning “ reunion of broken parts and bonesetting 

) is one among the broad parts of mathematics ,together with number 

theory,geometryandanalysis.initsmostgeneralform,algebraisthestudyof mathematical 

symbols and the rules for manipulating these symbols ,it is a unifying thread of almost all 

ofmathematics. 

Homologicalalgebraisthebranchofmathematicsthatstudieshomology in a general algebraic 

setting. Homological algebra began to be studied in its most elementary form within 

the 1800s as a branch of topology , but it wasn′t until the 1940s that it became an 

independent subject with the study of objects like the ext functor and therefore the tor 

functor , among others. It is a comparatively young discipline, whose origins are 

often traced to investigations in combinatorial topology ( a precursor to algebraic topology 

) and abstract algebra ( theory of 

modulesandsyzygies)attheendofthe19thcentury,chieflybyHenripoincare and Davidhilbert.  

Homological algebra affords the means to extract information contained within the se 
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complexes and present it in the sort of homological invariants of 

rings ,modules ,topologicalspaces ,andother„tangible̓mathematicalobjects . A powerful tool 

for doing this provided by spectral sequence
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DEFINITION  

Let A be a ring.A module E is called stably free if there exists a finite free module F 

such that E⊕F is finite free, and thus isomorphic to A(n) for some positive integer n. In 

particular, E is projective and finitely generated. 

We say that a module M has a finite free resolution if there exist a resolution , 

0 ⟶ En ⟶ ……
 E0 ⟶ M ⟶ 0. 

Such that each Ei is finite free. 

 

THEOREM 

Let M be a projective module. Then M is stably free if and only if M admits a finite 

free resolution . 

PROOF: 

If M is stably free then it is trivial that M has a finite free resolution . conversely 

assume the existence of the resolution with the above notation. We prove that M is stably 

free by induction on n. 

The assertion is obvious if n =0. Assume n ≧ 1. Insert the kernals and cokernals at 

each step,in the manner of dimension shifting ,say 

M1 = Ker( E0 → P) 

Giving rise to the exact sequence 

0 ⟶ M1 ⟶ E0 ⟶ M ⟶ 0. 
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Since , M is projective this sequence splits , and E0≈ M⨁M1. But M1 has a finite free 

resolution of length smaller than the resolution of M, so there exists a finite free module F 

such that M1⨁F is free. Since E0⨁F is also free. 

A resolution , 

0 ⟶ En ⟶ E0 ⟶ M ⟶ 0 

is called stably free if all the modules Ei( i= 0,……n) are stably free. 

 

PROPOSITION  

Let M be an A-  module. Then M has a finite free resolution of length   n ≧ 1 if 

and only if M has a stably free resolution of length n. 

PROOF: 

One direction is trivial, so we suppose given a stably free resolution with the above 

notation. 

Let 0≦ i< n be some integer, and let Fi , Fi+1 be finite free such that Ei⊕Fi and Ei+1⊕Fi+1 

are free. 

Let F = Fi ⊕Fi+1. Then we can form an exact sequence, 

0 → Ei → ∙∙∙∙∙∙∙∙∙∙ → Ei+1 ⊕ F → Ei⊕ F → ∙∙∙∙∙∙∙∙∙ → E0 → M → 0 

In the obvious manner. In this way, we have changed two consecutive modules in the 

resolution to make them free. Proceeding by induction, we can then make E0 , E1 free, then 

E1 , E2 free and so on . 

 

THEOREM  

Let M be a module which admits a free resolution of length n. 

0 ⟶ En ⟶ ................ ⟶ E0 ⟶ M ⟶ 0 

PROOF  

Let Fm ⟶ ................... ⟶ F0 ⟶ M ⟶ 0 

be an exact sequence with Fi stably free for i = 0,… .................. ,m. 
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(i) If m < n-1 then there exists a stably free Fm+1 such that exact sequence can be 

continued exactly to 

Fm+1 ⟶ ..........⟶ F0 ⟶ M ⟶ 0 

(ii) If m = n-1 ,let Fn = ker ( Fn-1 ⟶ Fn-2 ). Then Fn is stably free and thus 0 ⟶ Fn ⟶ 

Fn-1 ⟶ .......................................... ⟶ F0 ⟶ M ⟶ 0 

is a stably free resolution. 

 

 

DEFINITION 

The minimal length of a stably free resolution of a module is called its 

stably free dimension. 

 

 

COROLLARY  

If 0 ⟶ M1 ⟶ E ⟶ M  ⟶  0  is  exact  ,  M  has  stably  free  dimension ≦ n , and E 

is stably free ,then M1 has stably free dimension ≦ n-1. 

 

DEFINITION 

Let A be a ring and M a module .A sequence of elements x1,… ,xr 

in a A is called M-regular if M ∕ ( x1,…..,xr ) M ≠ 0 , if x1 is not divisor of zero in M , and for i 

≧ 2 , x1 is not divisor of 0 in 

M ∕ ( x1,… ,xi-1) M 

It is called regular when M = A. 

 

 

DEFINITION  

Let A be a commutative ring and x∈A . we define the complex K(x) to have K0(x) = 

A , K1(x) = Ae1 , where e1 is a symbol , Ae1 is the free module of rank 1 with basis {e1} , and 

the boundary map is defined by de1 = x , so the complex can be represented by the sequence 
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1 𝑝 

f 

 
𝑓̃ 

d 

0  ⟶ Ae1  ⟶   A ⟶ 0 
 

0  ⟶ K1(x) ⟶ K0(x) ⟶ 0 

More generally, for elements x1,……,xr ∈ A we define the Koszul complex K(x) = K ( 

x1,……,xr) as follows .we put; 

K0(x) = A; 

K1(x) = free module E with basis { e1,…..,er) ; 

Kp(x) = free module ⋀p
E witth basis { 𝑒𝑖 ∧….∧ 𝑒𝑖 }, i1 < ⋅⋅⋅⋅⋅< ip ; 

Kr(x) = free module ⋀r
E of rank 1 with basis e1 ∧⋅⋅⋅⋅∧ er. 

And we define the boundary maps by dei = xi and  general d : Kp(x) 

⟶ Kp-1(x) by, 

d ( 𝑒 ∧….∧ 𝑒 ) = ∑𝑝 (−1)j-1 𝑥 𝑒 ∧⋅⋅⋅⋅∧ 𝑒̂ ∧⋅⋅⋅⋅∧𝑒 } 
𝑖1 𝑖𝑝 𝑗=

1 
𝑖𝑗 𝑖

1 
𝑖𝑗 𝑖𝑝 

 
 

DEFINITION 

Given a ring R and modules AR and  RB , then their tensor product is an abelian 

group A ⨂R B and an R- biadditive function 

h : A × B ⟶ A ⨂R B such that , 

for every abelian group G and every R-biadd f : A × B ⟶ G , there 

exists a unique ℤ - homomorphism 𝑓̃ : A ⨂R B ⟶ G making the following diagram 

commute: 

h 

A × B A ⨂R B 

G 

=
 

=
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𝑖 

THEOREM  

Let D = det (cij ) be the determinant. then for p = r we get that fr : Kr (y) 

⟶ Kr (x) is multiplication by D, 

the homomorphisms fp define a morphism of Koszul complexes : 

 

0 Kr (y) ⋅⋅⋅ Kp (y) ⋅⋅⋅ K1 (y) A A∕ I′ 0 

 

fr = D fp f1 id can 

 

 

0 Kr (x) ⋅⋅⋅ Kp (x) ⋅⋅⋅ K1 (x) A A∕ I 0 

 

and define an isomorphism if D is a unit in A , for instance if ( y) is a permutation of ( x) . 

PROOF  

A complex 

0 ⟶ Kr(x) ⟶ ⋅⋅⋅⋅⟶ Kp(x) ⟶  ⋅⋅⋅⋅ ⟶  K1(x) ⟶  A  ⟶  0  is 

independent of the ideal I = ( x1 ,….., xr ) generated by ( x). Let 

I = ( x1 ,….., xr ) ⊃ I′ = ( y1 ,…., yr ) 

be two ideals of A . We have a natural ring homomorphism can : A∕ I′ 

⟶ A∕ I . 

Let { 𝑒′,…., 𝑒′} be a basis for K1 (y) , and let 
1 𝑟 

yi  = ∑ cij xij with cij ∈ A. 

we define f1 : K1 (y) ⟶ K1 (x) by 

f1𝑒′ = ∑ cij ej 

and fp = f1 ∧ ⋅⋅⋅⋅ ∧ f1 , product taken p times. By 

definition, 

f ( 𝑒′ ∧ ⋅⋅⋅⋅ ∧ 𝑒′ ) = ( ∑𝑟 𝑐𝑖 j ej ) ∧⋅⋅⋅⋅∧ ( ∑𝑟 𝑐𝑖 j ej ) 
𝑖1 𝑖𝑝 𝑗=1

 
1 

𝑗=1 𝑝 
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𝑗=1 𝑗=1 𝑗=1 

then 

f d ( 𝑒′   ∧ ⋅⋅⋅⋅ ∧ 𝑒′  ) = f ( ∑𝑘( −1 ) k-1  𝑦𝑖 

 
𝑒 ′   ∧ ⋅⋅⋅⋅ ∧  𝑒̂′ 

 

∧ ⋅⋅⋅⋅ ∧ 𝑒′ ) 
𝑖1 𝑖𝑝 𝑘

 𝑖
1 

𝑖𝑘 𝑖
𝑝 

= ∑𝑘( −1 ) k-1 𝑦𝑖     ( ∑𝑟 𝑐𝑖   j ej ) ∧ ⋅⋅⋅ ∧  ∑̂ ∧⋅⋅⋅⋅∧( ∑𝑟  𝑐𝑖 j ej ) 
𝑘 𝑗=1 1 𝑘 𝑗=1 𝑝 

= ∑ ( −1)k-1 ( ∑𝑟 𝑐𝑖
1 

j ej ) ∧⋅⋅⋅⋅∧ (∑𝑟 𝑐𝑖
𝑘 

j xj ej ) ∧⋅⋅⋅⋅⋅ ∧( ∑𝑟 𝑐𝑖
𝑝 

j ej ) 

 

 

omitted 

= d f ( 𝑒′ ∧ ⋅⋅⋅⋅ ∧ 𝑒′ ) 
𝑖1 𝑖𝑝 

Using 𝑦𝑖𝑘 = ∑𝑐𝑖𝑘j xj . This concludes the proof that the fp define a homomorphism of 

complexes. 

In particular , if (x) and (y) generate the same ideal , and the determinant D is a unit ( 

i.e. the linear transformation going from (x) to (y) is invertible over the ring) , then the two 

Koszul complexes are isomorphic. 

 

THEOREM  

There is a natural isomorphism 

K ( x1,……,xr) ≈ K (x1) ⨂ ⋅⋅⋅⋅ ⨂ K(xr) . 

PROOF: 

Let I = ( x1,……,xr ) be the ideal generated by x1,…..,xr . then 

directly from the definitions of the 0-th homology of the Koszul complex is   A ∕ IA . 

More generally , let M be an A-module.Define the Koszul complex of M 

by , 

K(x ; M ) = K( x1,…..,xr ; M ) = K ( x1,…..,xr) ⨂A M 

Then this complex looks like 

0 ⟶ Kr(x) ⨂ M ⟶ ⋅⋅⋅⋅⟶ K2(x) ⨂A M ⟶ M ⟶ 0 . 

} 
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We sometimes abbreviate Hp(x ; M) for Hp K(x ; M). The first and last homology groups are then 

obtained directly from the definition of boundary. We get, 

H0 (K(x ; M ) ) ≈ M ∕ IM 

Hr (K(x) ; M ) = { 𝓋 ∈ M such that xi𝓋 = 0 for all i = 1,…r }.A tensor product of any 

complex with K( x) , when x consists of a single element. Let y 

∈ M and let C be an arbitrary complex of A-modules. We have an exact sequence of 

complexes 

0 ⟶ C ⟶ C ⨂ K(y) ⟶  ( C ⨂ K(y) ) ∕ C  ⟶ 0 (1) 

Made explicit as follows, 

   

0 Cn+1 (Cn+1 ⨂ A) ⨁ (Cn ⨂ K1(y)) Cn⨂ K1(y) 0 

 

0 Cn (Cn ⨂ A) ⨁ (Cn-1 ⨂ K1(y)) Cn-1 ⨂ K1(y) 0 

 

0 Cn -1 (Cn-1 ⨂ A) ⨁ (Cn-2 ⨂ K1(y)) Cn-2 ⨂ K1(y) 0 

 

 

We note that C ⨂ K1(y) is just C with a dimension shift by one unit , in other words, 

(C ⨂ K1(y))n+1 = Cn ⨂ K1(y) (2) 

In particular, 

Hn+1(C ⨂ K(y) ∕ C ) ≈ Hn(C) (3) 
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Associated with an exact sequence of complexes, we have the homology 

sequence , which in this case yields the long exact sequence , 

 

Hn+1(C) Hn+1(C ⨂ K1(y) ) 
∂ 

Hn+1 (C ⨂ K(y) ∕ C ) Hn(C) 

 

 

Hn(C) 

Which we write stacked up according to the index : 

 

 

⟶  Hp+1(C)  ⟶ Hp+1(C)  ⟶ Hp+1 (C ⨂ K(y)) ⟶ 

⟶  Hp(C) ⟶ Hp(C)  ⟶ Hp (C ⨂ K(y)) ⟶ (4) 

 

Ending in lowest dimension with 

⟶ H1(C)  ⟶  H1 (C ⨂ K(y))  ⟶  H0(C) ⟶  H0(C) (5) 

Furthermore , a direct application of the definition of the boundary map and the tensor 

product of complexes yields : 

The boundary map on Hp(C) ( p ≧ 0 ) is induced by multiplication by ( 

−1)p y : 

∂ = (−1)p m(y) : Hp(C) ⟶  Hp(C) (6) 

sssIndeed , write 

(C ⨂ K(y))p = ( Cp ⨂ A) ⨁ ( Cp-1 ⨂ K1(y)) ≈ Cp ⨁ Cp-1. 

Let (𝓋,w) ∈ Cp ⨁ Cp-1 with 𝓋 ∈ Cp and w ∈ Cp-1 . then directly from the definitions, 

d (𝓋,w ) = ( d𝓋 + (−1)p-1  yw , dw ) (7) 

To see (6) , one merely follows up the definitions of the boundary , taking an element w ∈ Cp 

≈ ( Cp ⨂ K1(y)) , lifting back to (0,w) , applying d , and lifting back to Cp. 

≈
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If we start with a cycle ,i.e. dw = 0 , 

then the map is well defined on the homology class , with values in the homology. 

 

DEFINITION 

EXT FUNCTOR: 

Let R be a ring and let 𝒶 = Mod (R) be the category of R-modules. Fix a module A. 

The functor M ⟼ Hom (A , M) is left exact, i.e. given an exact sequence 0 ⟶ M′ ⟶ M ⟶ 

M″ , the sequence 

0 ⟶ Hom(A , M′) ⟶ Hom (A , M ) ⟶ Hom( A , M″) 

is exact. Its right derived functors are denoted by Extn(A , M) for M variable. 

 

DEFINITION  

TOR FUNCTOR : 

Let R be commutative. The functor M ⟼ A ⨂ M is right exact , in other words , the 

sequence 

A ⨂ M′  ⟶ A ⨂ M  ⟶ A ⨂ M″ ⟶ 0 

is exact. Its left derived functors are denoted by Torn(A , M) for M variable. 

 

THEOREM  

Let x1,…….,xr be an M-regular sequence in A . let I = (x). then Exti ( A ∕ 

I,M ) = 0 for i < r. 

PROOF: 

we assume that the exact homology sequence. Assume by induction that Exti(A ∕ I,M 

) = 0 for i < r−1.then we have the exact sequence, 

0 = Exti-1(A∕I , M∕x1M ) ⟶ Exti(A ∕ I , M) ⟶ Exti(A∕ I, M) 
X1 
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𝑖 

𝑝 

𝑅 

for i < r. But x1 ∈ I so multiplication by x1 induces 0 on the homology groups, which gives 

Exti(A ∕ I , M) = 0 as desired. 

Let Ln ⟶ N ⟶ 0 be a free resolution of a module N.by definition, 

𝑇𝑜𝑟𝐴 ( N , M) = i-th homology of the complex L⨂M. This is 

independent of the choice of LN up to a unique isomorphism. 

 

COROLLARY 

If x is a regular sequence in R ,then K(x) is a free resolution of R∕I, Z = ( x1,…..,xn) 

R. that is , the following sequence is exact : 
x 

0 ⟶ ⋀n( Rn) ⟶ ⋅⋅⋅⋅⋅ ⟶ ⋀2
( Rn) ⟶ Rn ⟶ 

In this case we have, 

𝑇𝑜𝑟𝑅 ( R ∕I ,A ) = Hp( x, A): 

𝐸𝑥𝑡𝑝  (R ∕I ,A ) = Hp( x, A) . 

R ⟶ R∕I ⟶ 0 



13  

CONCLUSION 

 

 

In this project concluded that the briefly explained about HOMOLOGICAL 

ALGEBRA , and also its utilized in the concepts are particularly in algebraic topology , 

algebraic geometry , irrational number theory , commutative algebra , operator algebras 

and etc….. 
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