
Abstract

Web  queries,  credit  card  transactions,  and  medical
records are examples of transaction data flowing in corporate
data  stores,  and  often  revealing  associations  between
individuals  and  sensitive  information.  The  serial  release  of
these data to partner institutions or data analysis centers in a
non-aggregated form is a common situation. In this paper, we
show that correlations among sensitive values associated to
the same individuals in different releases can be easily used
to  violate  users’  privacy  by  adversaries  observing  multiple
data  releases,  even  if  state-  of-the-art  privacy  protection
techniques are applied. We  show how the above sequential
background  knowledge  can   be  actually  obtained  by  an
adversary,  and  used  to  identify  with  high  confidence  the
sensitive  values  of  an  individual.  Our  proposed  defense
algorithm is  based  on  Jensen-  Jensen-Shannon  divergence;
experiments  show  its  superiority  with  respect  to  other
applicable solutions. To the best of our knowledge, this is the
first  work  that  systematically  investigates  the  role  of
sequential  background  knowledge  in  serial  release  of
transaction data.
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I.INTRODUCTION

Large amounts of  data related to individuals  are
continuously  acquired,  and  stored  by  corporate  and
government  institutions.  Examples  include  mobile
service requests, web queries, credit card transactions,

and  transit  database  records.  These  institutions  often
need to repeatedly release new or updated portions of
their  data  to  other  partner  institutions  for  different
purposes, including distributed processing, participation
in inter-organizational workflows, and data analysis. The
medical  domain  is  an  interesting  example:  many
countries  have  recently  established  centralized  data
stores that exchange patients’ data with medical
institutions;  new  records  are  periodically  released  to
data analysis centers in non-aggregated form.

A  challenging  issue  in  this  scenario  is  the
protection of users’ privacy, considering that potential
adversaries have access to multiple serial releases and
can easily acquire background knowledge related to the
specific domain. This knowledge includes the fact that
certain sequences of values in subsequent releases are
more likely to be observed than other sequences that a
sequence of medical exam results within a certain time
frame  has  higher  probability  to  be  observed  than
another sequence.

Privacy  protection approaches  can  be  divided in
micro data anonymity and differential privacy methods.
Micro  data  anonymity  works  have  focused  on
techniques dealing either with multiple data releases, or
with adversary background knowledge, but limited to a
single data release.

In this paper, we formally model privacy attacks 
based on background knowledge extended to serial 
micro-data releases. We present a new probabilistic 
defense technique taking into account adversary’s 
background knowledge and how he can revise it each 
time new data are released. Similarly to other 
anonymization techniques, our method is based on the 
generalization of quasi-identifier (QI) values, but 
generalization is performed with a new goal: minimizing 
the difference among sensitive values probability 
distributions within each QI-group, while considering the 

JS-REDUCE: DEFENDING YOUR DATA FROM SEQUENTIAL
BACKGROUND KNOWLEDGE ATTACKS

M.KAMARUNISHA1,A.SIVASANKARI2,R.KAYALVIZHI3

Assistant Professor,Department of Computer Applications,Dhanalakshmi Srinivasan College of
Arts and Science For Women(Autonomous),Perambalur.



knowledge revision process. Jensen-Shannon divergence
is used as a measure of similarity. We consider different 
methods and accuracy levels for the extraction of 
background knowledge, and we show that our defense 
is effective under different combinations of the 
knowledge of the adversary and the defender.

II.  MOTIVATING SCENARIO

We  consider  the  case  of  transaction  data
representing  the  results  of  medical  exams  taken  by
patients,  and  the  need  to  periodically  release  these
transactions  for  data  analysis.  Each  released  view
contains one tuple for each patient who performed an
exam during  the week preceding the publication.  We
assume that data are published weekly. For the sake of
simplicity,  we  also  assume  that  each  user  cannot
perform more than one exam per week; hence, no more
than one tuple per user can appear in the same view.
Each generalized tuple includes the age, gender, and zip
code  of  the  patient,  as  well  as  the  performed  exam
together  with  its  result.  We refer  to  this  latter  data,
represented by the multi-value attribute Exres, as exam
result.1 We denote as positive (pos) a result that reveals
something  anomalous;  negative  (neg)  otherwise.  The
attribute  Ex-  res  is  considered  the sensitive attribute,
while  the  other  attributes  play  the  role  of  quasi
identifiers  (QI),  since  they  may  be  used,  joined  with
external  information,  to  restrict  the  set  of  candidate
respondents.

TABLE 1

Original and Generalized Transaction Data at the First and 
Second Release (First and Second Week, Respectively)

adversary cannot exploit BKsv (reported in Table 2) to
infer  whether Alice  or  Betty is  the respondent  of  the
tuple  with  value  MAM-pos.  Hence,  his  posterior
knowledge after observing tuples released at _1 states

that,  both for Alice and Betty, the probability  of being
the respondent of one tuple with private value MAM-pos
is the same of being the respondent of one tuple with
private  value  CX-neg,  i.e.,  0.5.  Analogously,  Carol  and
Doris have equal probability of being the respondent of
one  tuple  with  private  value  CX-pos  and  of  one  with
private value BS-neg.

TABLE 2

Adversary’s Background Knowledge

III. MODELING ATTACKS BASED ON BACKGROUND AND 

REVISED KNOWNLEDGE

In this section, we formally model privacy attacks 
based on background and revised knowledge.

A. Problem Definition

We denote by Vi a view on the original transaction 
data at time Ti, and by Vi* the generalization of Vi 
released by the data publisher. We denote a history of 
released generalized views by Hj*=<V1*,V2*…,Vj*> We 
assume that the schema remains unchanged throughout
the release history, and we partition the view columns 
into a set Aqi{A1,A2,…,Am} of quasi- identifier 
attributes, and into a single private attribute S. For 
simplicity, we assume that the domain of each quasi- 
identifier attribute is numeric, but our notions and 
techniques can be easily extended to categorical 
attributes. Given a tuple t in a view and an attribute A in 
its schema, t[A] is the projection of tuple t onto attribute
A.



B.SENSITIVE  VALUES  BACKGROUND  KNOWLEDGE
(BKSV)

Sensitive values background knowledge represents
the apriori probability of associating an individual to a
sensitive value. We model the sensitive value referring
to a  respondent  r  by  means of  the discrete  random
variable  S  having  values  in  D[S].  BKsv  is  modeled
according to the following definition.

Definition1.  The  sensitive  values  background
knowledge is  a  function  BKsv : R ,  where R is the
set of possible respondents’ identities, and

IV. JS-REDUCE DEFENSE

In this section, we illustrate the JS-reduce defense
against the identified background knowledge attacks.

A. Defense Strategy
In  order  to  enforce anonymity,  it  is  necessary  to

limit the adversary’s capability of identifying the actual
respondent of a tuple in a given QI-group. this means
reducing  the  confidence  of  the  adversary  in
discriminating  a  configuration  c  among  the  possible
ones, based on his revised knowledge RBKsv.

The goal of JS-reduce is to create QI-groups whose
tuple  respondents  have  similar  RBKsv  (resp.  BKsv)
distributions. Indeed, if the respondents of tuples in a
QI-group  are  indistinguishable  with  respect  to  RBKsv

(resp.  BKsv),  the  adversary  cannot  exploit  background
knowledge to perform the attack. Of course, defending
against background knowledge attacks is not sufficient to
guarantee  privacy  protection  against  other  kinds  of
attacks.  For  this  reason,  JS-reduce  also  enforces  k-
anonymity and t-closeness,  in order  to protect  against
well-known identity and attribute-disclosure attacks,

    Fig.1. Defense mechanisms.

    

B. The JS-Reduce Algorithm
The  pseudocode  of  the  JS-reduce  algorithm  is

shown in Algorithm 1. The algorithm takes as input:



C. Data Quality-Oriented Generalization

Any  anonymization  technique  based  on  QI
generalization needs to carefully consider the resulting
data quality: the more the QI values are generalized,
the  lower  is  the  quality  of  released  data.  Hence,
instead of adopting a general purpose anonymization
framework  such as  Mondrian  we devised  an  ad hoc
technique. Note that finding the optimal generalization
of data that satisfies the privacy requirements of  JS-
reduce (i.e., the one that minimizes QI generalization)
is  an NP-hard problem; indeed, it  is well  known that
even optimal k- anonymous generalization is NP-hard.

V.EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
the privacy threats due to sequential background knowledge
attacks,  we  compare  our  defense  with  other  applicable
solutions, and we evaluate data quality.

performed  during  that  week.  A  tuple  is  composed  of
three  QI  attributes  age,  gender,  and  weight,  and  a
sensitive attribute Ex-res. Age has values in the interval
[45,  74]  gender  in  [1,  2]  and  weight  in  [60,  89].  The
domain of Ex-res includes 17 different values associated
to  stages  of  different  diseases  (five  stages  of  liver
disease, four of the HIV syndrome, three of Alzheimer,
and  five  of  sepsis),  as  well  as  two sensitive  values  to
describe the deceased and discharged events.

A.The Role of Adversary’s Background Knowledge
We performed experiments to evaluate the role of

background  knowledge  on  the  privacy  threats
investigated  in  this  paper:  Incrementally  extracted
knowledge IE-BKseq. Since it was the subject of related
studies  the  first  kind  of  background  knowledge  we
consider is the one directly extracted from the data to be
released.  IE-BKseq  can  be  calculated  by  applying
sequential  pattern  mining  (SPM)  techniques  on  the
history  of  original  (i.e.,  non-anonymized)  data  at  each
time _i, IE-BKseq is calculated based on Vi. Since the size
of the corpus is relatively small, we applied a simple SPM
algorithm,  which  is  essentially  based  on  a  frequency
count of sequences appearing in the history.



Mined knowledge SPM-BKseq. In practice, an adversary
may approximate BKseq by applying SPM techniques on
an external corpus of nonanonymized data. We created a
data  corpus  using  the  same  model  that  we  used  to
generate our data set; the corpus consists in a history of
24 views containing 5,000 tuples each. SPM-BKseq was
calculated by applying Algorithm 5 to that corpus.

Domain  knowledge  DK-BKseq.  Since  our  data  set  was
generated  based  on  domain  knowledge,  in  our
experiments  DK-BKseq  corresponds  to  the  exact  BKseq;
i.e., it is the “best” knowledge that an adversary may have.

Fig.2. Adversary gain versus accuracy of adversary’s 
domain knowledge DK-BKseq.



Fig.3. JS-reduce versus different kinds of adversary’s
BKseq

B. Effectiveness of the JS-Reduce Defense
Results reported in Fig. 4c show that, when views
are anonymized with JS-reduce, the adversary gain
remains below 0.12, independently from the length
of the released history, and on the kind of domain
knowledge  available  to  the  adversary.  This  result
shows  that  JS-reduce  significantly  limits  the
inference capabilities of the adversary with respect
to the other techniques that lead to an adversary
gain  higher  than  0.5.  We  performed  other
experiments  to  evaluate  the  effectiveness  of  JS
reduce with different combinations of background
knowledge  available  to  the  defender  and  to  the
adversary,  respectively.  In  Fig.  5a,  we considered
the  case  in  which  the  defender  has  background
knowledge DK-BKseq.  In  this  case,  the defense is
very  effective,  even  when  the  adversary  has  the
same  background  knowledge  as  the  defender.
When  the  adversary’s  background  knowledge  is
extracted  from  the  data,  we  observe  that  the
adversary  gain  is  lower.  With  the  label  n-SPM-
BKseq  in  Fig.  5,  we  denote  that  the  adversary’s
SPM-BKseq is  extracted based on a history  of  24
views containing n tuples each.

The adversary gain is lower with smaller values
of  n,  since  the  resulting  SPM-BKseq  is  a  coarser
approximation of  the exact  BKseq.  The adversary
gain  with  incrementally  extracted  knowledge  is
comparable to the one obtained with SPM-BKseq.
We also considered the unfortunate case in which
the  adversary  has  more  accurate  background
knowledge than the defender. Results illustrated in
Figs. 5b and 5c show the adversary gain when the
defender’s background knowledge is IE-BKseq and
SPM-BKseq,  respectively.  As  expected,  the  more
accurate the attacker’s background knowledge with
respect to the defender’s one, the more effective
the attack.

Fig.4. Adversary confidence.

Fig.5. Data quality evaluation

VI. CONCLUSIONS
In this paper, we showed that the correlation of

sensitive values in subsequent releases can be used
as background knowledge to violate users’ privacy.
We showed that  an  adversary  can actually  obtain
this knowledge by different methods. We proposed
a  defense  algorithm  and  we  showed  through  an
extensive  experimental  evaluation  that  other
applicable  solutions  are  not  effective,  while  our
defense provides strong privacy protection and good
data  quality,  even  when  the  adversary  has  more



accurate background knowledge than the defender.
Our  framework  is  seamlessly  extensible  with
additional forms of probabilistic inference, since the
JS-reduce  technique  relies  on  a  background
knowledge  revision  process  that  is  not  tied  to  a
specific inference method.
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